首页> 外文期刊>Computing and informatics >AN IMPROVED PDR LOCALIZATION ALGORITHM BASED ON PARTICLE FILTER
【24h】

AN IMPROVED PDR LOCALIZATION ALGORITHM BASED ON PARTICLE FILTER

机译:一种基于粒子滤波器的PDR定位算法

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian Dead Reckoning (PDR) helps to realize step frequency detection, step estimation and direction estimation through data collected by inertial sensors such as accelerometer, gyroscope, magnetometer, etc. The initial positioning information is used to calculate the position of pedestrians at any time, which can be applied to indoor positioning technology researching. In order to improve the position accuracy of pedestrian track estimation, this paper improves the step frequency detection, step size estimation and direction detection in PDR, and proposes a particle swarm optimization particle filter (PSO-IPF) PDR location algorithm. Using the built-in accelerometer information of the smartphone to carry out the step frequency detection, the step frequency parameter construction model is introduced to carry out the step estimation, the direction estimation is performed by the Kalman filter fusion gyroscope and the magnetometer information, and the positioning data is merged by using the particle filter. The fitness function in the particle swarm optimization process is changed in the localization algorithm to improve particle diversity and position estimation. The experimental results show that the error rate of the improved step frequency detection method is reduced by about 2.1% compared with the traditional method. The angle accuracy of the direction estimation is about 4.12 degrees higher than the traditional method. The overall positioning accuracy is improved.
机译:步行人员死亡(PDR)有助于通过诸如加速度计,陀螺仪,磁力计等的惯性传感器收集的数据来实现步进频率检测,步骤估计和方向估计,初始定位信息用于随时计算行人的位置,这可以应用于室内定位技术研究。为了提高行人轨道估计的位置准确性,本文提高了PDR中的步进频率检测,步长估计和方向检测,并提出了一种粒子群优化粒子滤波器(PSO-IPF)PDR位置算法。使用智能手机的内置加速度计信息来执行阶梯频率检测,引入步进频率参数施工模型来执行步骤估计,方向估计由卡尔曼滤波器融合陀螺和磁力计信息进行。定位数据通过使用粒子滤波器合并。在本地化算法中改变了粒子群优化过程中的健身功能,以改善粒子分集和位置估计。实验结果表明,与传统方法相比,改进的步进频率检测方法的误差率降低了约2.1%。方向估计的角度精度比传统方法高约4.12度。整体定位精度得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号