首页> 外文期刊>Computing and informatics >TRAVEL MODE RECOGNITION FROM GPS DATA BASED ON LSTM
【24h】

TRAVEL MODE RECOGNITION FROM GPS DATA BASED ON LSTM

机译:来自基于LSTM的GPS数据的旅行模式识别

获取原文
获取原文并翻译 | 示例

摘要

A large amount of GPS data contains valuable hidden information. With GPS trajectory data, a Long Short-Term Memory model (LSTM) is used to identify passengers' travel modes, i.e., walking, riding buses, or driving cars. Moreover, the Quantum Genetic Algorithm (QGA) is used to optimize the LSTM model parameters, and the optimized model is used to identify the travel mode. Compared with the state-of-the-art studies, the contributions are: 1. We designed a method of data processing. We process the GPS data by pixelating, get grayscale images, and import them into the LSTM model. Finally, we use the QGA to optimize four parameters of the model, including the number of neurons and the number of hidden layers, the learning rate, and the number of iterations. LSTM is used as the classification method where QGA is adopted to optimize the parameters of the model. 2. Experimental results show that the proposed approach has higher accuracy than BP Neural Network, Random Forest and Convolutional Neural Networks (CNN), and the QGA parameter optimization method can further improve the recognition accuracy.
机译:大量GPS数据包含有价值的隐藏信息。使用GPS轨迹数据,长期短期内存模型(LSTM)用于识别乘客的旅行模式,即行走,骑乘公共汽车或驾驶汽车。此外,量子遗传算法(QGA)用于优化LSTM模型参数,并且优化的模型用于识别行驶模式。与最先进的研究相比,贡献是:1。我们设计了一种数据处理方法。我们通过像素化,获取灰度图像的GPS数据,并将其导入LSTM模型。最后,我们使用QGA来优化模型的四个参数,包括神经元数和隐藏层数,学习率和迭代次数。 LSTM用作采用QGA的分类方法来优化模型的参数。 2.实验结果表明,该方法的准确性高于BP神经网络,随机森林和卷积神经网络(CNN),QGA参数优化方法可以进一步提高识别精度。

著录项

  • 来源
    《Computing and informatics》 |2020年第2期|298-317|共20页
  • 作者单位

    Peoples Publ Secur Univ China Coll Police Informat Technol & Cyber Secur Beijing Peoples R China;

    Peoples Publ Secur Univ China Coll Police Informat Technol & Cyber Secur Beijing Peoples R China;

    Peoples Publ Secur Univ China Coll Police Informat Technol & Cyber Secur Beijing Peoples R China;

    Peoples Publ Secur Univ China Coll Police Informat Technol & Cyber Secur Beijing Peoples R China;

    Univ Essex Sch Comp Sci & Elect Engn Colchester Essex England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GPS; LSTM; QGA; deep learning; travel mode;

    机译:GPS;LSTM;QGA;深入学习;旅行模式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号