首页> 外文期刊>Computing and informatics >MULTI-DIMENSIONAL RECOMMENDATION SCHEME FOR SOCIAL NETWORKS CONSIDERING A USER RELATIONSHIP STRENGTH PERSPECTIVE
【24h】

MULTI-DIMENSIONAL RECOMMENDATION SCHEME FOR SOCIAL NETWORKS CONSIDERING A USER RELATIONSHIP STRENGTH PERSPECTIVE

机译:考虑用户关系强度观点的社交网络多维推荐方案

获取原文
获取原文并翻译 | 示例

摘要

Developing a computational method based on user relationship strength for multi-dimensional recommendation is a significant challenge. The traditional recommendation methods have relatively low accuracy because they lack considering information from the perspective of user relationship strength into the recommendation algorithm. User relationship strength reflects the degree of closeness between two users, which can make the recommendation system more efficient between users in pairs. This paper proposes a multi-dimensional comprehensive recommendation method based on user relationship strength. We take three main factors into consideration, including the strength of user relationship, the similarity of entities, and the degree of user interest. First, we introduce a novel method to generate a user candidate set and an entity candidate set by calculating the relationship strength between two users and the similarity between two entities. Then, the algorithm will calculate the user interest degree of each user in the user candidate set to each entity in the entity candidate set, if the user interest degree is larger than or equal to a threshold, this particular entity will be recommended to this user. The performance of the proposed method was verified based on the real-world social network dataset and the e-commerce website dataset, and the experimental result suggests that this method can improve the recommendation accuracy.
机译:基于用户关系强度的开发计算方法对于多维推荐是一项重大挑战。传统推荐方法具有相对较低的准确性,因为它们缺乏从用户关系强度的角度考虑信息,进入推荐算法。用户关系强度反映了两个用户之间的亲密程度,这可以使推荐系统成对在用户之间更有效。本文提出了一种基于用户关系强度的多维综合推荐方法。考虑三个主要因素,包括用户关系的力量,实体的相似性以及用户兴趣的程度。首先,我们介绍一种新的方法来生成用户候选集和通过计算两个用户之间的关系强度和两个实体之间的相似性的实体候选集。然后,如果用户兴趣度大于或等于阈值,则该算法将计算到实体候选集中的每个实体中的每个用户的用户感兴趣程度,如果用户兴趣度大于或等于阈值,则将向该用户推荐该特定实体。基于现实世界的社交网络数据集和电子商务网站数据集验证了该方法的性能,实验结果表明这种方法可以提高推荐准确性。

著录项

  • 来源
    《Computing and informatics》 |2020年第2期|105-140|共36页
  • 作者单位

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 200234 Peoples R China|Shanghai Normal Univ Inst Artificial Intelligence Educ Shanghai 200234 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 200234 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 200234 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 200234 Peoples R China;

    Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai 200234 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommendation system; social network; user relationship strength; user interest; entity similarity;

    机译:推荐系统;社交网络;用户关系力量;用户兴趣;实体相似;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号