首页> 外文期刊>Computing and informatics >AGENT-BASED SYSTEM FOR MOBILE SERVICE ADAPTATION USING ONLINE MACHINE LEARNING AND MOBILE CLOUD COMPUTING PARADIGM
【24h】

AGENT-BASED SYSTEM FOR MOBILE SERVICE ADAPTATION USING ONLINE MACHINE LEARNING AND MOBILE CLOUD COMPUTING PARADIGM

机译:基于代理的在线机器学习和云计算参数的移动服务自适应系统

获取原文
获取原文并翻译 | 示例

摘要

An important aspect of modern computer systems is their ability to adapt. This is particularly important in the context of the use of mobile devices, which have limited resources and are able to work longer and more efficiently through adaptation. One possibility for the adaptation of mobile service execution is the use of the Mobile Cloud Computing (MCC) paradigm, which allows such services to run in computational clouds and only return the result to the mobile device. At the same time, the importance of machine learning used to optimize various computer systems is increasing. The novel concept proposed by the authors extends the MCC paradigm to add the ability to run services on a PC (e.g. at home). The solution proposed utilizes agent-based concepts in order to create a system that operates in a heterogeneous environment. Machine learning algorithms are used to optimize the performance of mobile services online on mobile devices. This guarantees scalability and privacy. As a result, the solution makes it possible to reduce service execution time and power consumption by mobile devices. In order to evaluate the proposed concept, an agent-based system for mobile service adaptation was implemented and experiments were performed. The solution developed demonstrates that extending the MCC paradigm with the simultaneous use of machine learning and agent-based concepts allows for the effective adaptation and optimization of mobile services.
机译:现代计算机系统的一个重要方面是它们的适应能力。在使用移动设备的情况下,这一点尤其重要,因为移动设备的资源有限,并且可以通过自适应来工作更长久,更有效。适应移动服务执行的一种可能性是使用移动云计算(MCC)范式,该范式允许此类服务在计算云中运行,并且仅将结果返回给移动设备。同时,用于优化各种计算机系统的机器学习的重要性也在增加。作者提出的新颖概念扩展了MCC范式,从而增加了在PC(例如,家用)上运行服务的能力。提出的解决方案利用基于代理的概念来创建在异构环境中运行的系统。机器学习算法用于优化移动设备上在线移动服务的性能。这保证了可伸缩性和隐私性。结果,该解决方案使得可以减少移动设备的服务执行时间和功耗。为了评估提出的概念,实施了基于代理的移动服务适配系统并进行了实验。开发的解决方案表明,通过同时使用机器学习和基于代理的概念来扩展MCC范例,可以有效地适应和优化移动服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号