首页> 外文期刊>Computing and informatics >EXTRA: EXPERTISE-BOOSTED MODEL FOR TRUST-BASED RECOMMENDATION SYSTEM BASED ON SUPERVISED RANDOM WALK
【24h】

EXTRA: EXPERTISE-BOOSTED MODEL FOR TRUST-BASED RECOMMENDATION SYSTEM BASED ON SUPERVISED RANDOM WALK

机译:额外:基于监督随机漫步的基于信任的推荐系统的专家级模型

获取原文
获取原文并翻译 | 示例

摘要

The quality of recommendations based on any class of recommender systems may become poor if no or low quality data has been provided by users. This is a situation known as Cold Start problem, which typically happens when a new user registers to the system and no preference data is available for that user. Trust-Aware Recommendation Systems can be considered as a solution for the cold start problem. In these systems, the trust between users plays an import role for making recommendations. However, most of the Trust-Aware RSs consider trust as a context independent phenomenon which means if user a trusts user b to the degree k then user a trusts user b to the degree k in all the concepts. However, in reality, trust is context dependent and user a can trust user b in context X but not in Y. Moreover, most of the trust-aware RSs do not consider an expertise concept for users and all the users are considered as same in the recommendation process. In this paper we proposed a novel approach for detecting expert users just based on their ratings (unlike previous systems which consider the separate profile and extra information for each user to find an expert). In this model a supervised random walk is exploited to search the trust network for finding experts Empirical experiments on the Epinions dataset shows that EXTRA can outperform previous models in terms of accuracy and coverage.
机译:如果用户未提供或质量较低的数据,则基于任何类别的推荐系统的推荐质量可能会变差。这就是所谓的冷启动问题,通常在新用户注册到系统并且该用户没有可用偏好数据时发生。信任感知推荐系统可以视为冷启动问题的解决方案。在这些系统中,用户之间的信任在提出建议方面起着重要的作用。但是,大多数信任感知RS都将信任视为上下文无关的现象,这意味着,如果用户a在所有概念上都信任度为k的用户b,那么用户a在级别上都信任度为k的用户b。但是,实际上,信任是依赖于上下文的,并且用户a可以在上下文X中信任用户b,而不是在Y中。此外,大多数信任感知的RS都不考虑用户的专业知识概念,并且所有用户都被视为相同。推荐过程。在本文中,我们提出了一种仅根据专家用户的等级来检测专家用户的新颖方法(与先前的系统不同,后者考虑了单独的配置文件和每个用户的额外信息以寻找专家)。在该模型中,利用有监督的随机游动来搜索信任网络以寻找专家。Epinions数据集上的经验实验表明,EXTRA在准确性和覆盖率方面可以胜过以前的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号