首页> 外文期刊>Computing and informatics >NON-DIRECT ENCODING METHOD BASED ON CELLULAR AUTOMATA TO DESIGN NEURAL NETWORK ARCHITECTURES
【24h】

NON-DIRECT ENCODING METHOD BASED ON CELLULAR AUTOMATA TO DESIGN NEURAL NETWORK ARCHITECTURES

机译:基于细胞自动机的非直接编码方法设计神经网络体系结构

获取原文
获取原文并翻译 | 示例

摘要

Architecture design is a fundamental step in the successful application of Feed forward Neural Networks. In most cases a large number of neural networks architectures suitable to solve a problem exist and the architecture design is, unfortunately, still a human expert's job. It depends heavily on the expert and on a tedious trial-and-error process. In the last years, many works have been focused on automatic resolution of the design of neural network architectures. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability; thus, for representing large architectures very large structures are required. More interesting alternatives are represented by indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is proposed. This scheme is based on cellular automata representations and is inspired by the idea that only a few seeds for the initial configuration of a cellular automaton can produce a wide variety of feed forward neural networks architectures. The cellular approach is experimentally validated in different domains and compared with a direct codification scheme.
机译:架构设计是成功应用前馈神经网络的基本步骤。在大多数情况下,存在大量适合解决问题的神经网络架构,但是不幸的是,架构设计仍然是人类的工作。这在很大程度上取决于专家和繁琐的反复试验过程。近年来,许多工作集中在神经网络体系结构设计的自动解析上。大多数方法都基于进化计算范式。一些设计的方法是基于网络参数的直接表示。这些表示不允许扩展。因此,为了表示大型架构,需要非常大的结构。间接方案代表了更有趣的替代方案。它们将神经网络的紧凑表示形式化为代码。在这项工作中,提出了一种间接的建设性编码方案。该方案基于细胞自动机表示,并受到以下想法的启发:只有很少的种子可以自动构造细胞自动机的初始配置才能产生各种各样的前馈神经网络体系结构。细胞方法已在不同领域进行了实验验证,并与直接编码方案进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号