首页> 外文期刊>Computing and informatics >Robust Estimation Of Trifocal Tensors Using Natural Features For Augmented Reality Systems
【24h】

Robust Estimation Of Trifocal Tensors Using Natural Features For Augmented Reality Systems

机译:使用自然特征进行增强现实系统的三焦点张量的鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

Augmented reality deals with the problem of dynamically augmenting or enhancing the real world with computer generated virtual scenes. Registration is one of the most pivotal problems currently limiting AR applications. In this paper, a novel registration method using natural features based on online estimation of trifocal tensors is proposed. This method consists of two stages: offline initialization and online registration. Initialization involves specifying four points in two reference images respectively to build the world coordinate system on which a virtual object will be augmented. In online registration, the natural feature correspondences detected from the reference views are tracked in the current frame to build the feature triples. Then thes-e triples are used to estimate the corresponding trifocal tensors in the image sequence by which the four specified points are transferred to compute the registration matrix for augmentation. The estimated registration matrix will be used as an .initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. This paper also proposes a robust method for estimating the trifocal tensors, where a modified RANSAC algorithm is used to remove outliers. Compared with standard RANSAC, our method can significantly reduce computation complexity, while overcoming the disturbance of mismatches. Some experiments have been carried out to demonstrate the validity of the proposed approach.
机译:增强现实解决了使用计算机生成的虚拟场景动态增强或增强现实世界的问题。注册是当前限制AR应用程序的最关键问题之一。提出了一种基于三焦点张量在线估计的自然特征配准方法。该方法包括两个阶段:离线初始化和在线注册。初始化涉及分别在两个参考图像中指定四个点,以构建将在其上增强虚拟对象的世界坐标系。在在线注册中,将从参考视图中检测到的自然特征对应关系在当前帧中进行跟踪,以构建特征三元组。然后,使用s-e三元组来估计图像序列中的相应三焦点张量,通过该张量转移四个指定点以计算用于增强的配准矩阵。估计的配准矩阵将用作非线性优化方法的初始估计,该方法基于Levenberg-Marquardt(LM)最小化方法使实际残留误差最小化,从而使结果更稳定可靠。本文还提出了一种可靠的方法来估计三焦点张量,其中使用了一种改进的RANSAC算法来去除异常值。与标准的RANSAC相比,我们的方法可以显着降低计算复杂度,同时克服不匹配的干扰。已经进行了一些实验以证明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号