首页> 外文期刊>Computing and informatics >A MODEL OF USER PREFERENCE LEARNING FOR CONTENT-BASED RECOMMENDER SYSTEMS
【24h】

A MODEL OF USER PREFERENCE LEARNING FOR CONTENT-BASED RECOMMENDER SYSTEMS

机译:基于内容的推荐人系统的用户偏好学习模型

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses to a formal model of user preference learning for content-based recommender systems. First, some fundamental and special requirements to user preference learning are identified and proposed. Three learning tasks are introduced as the exact, the order preserving and the iterative user preference learning tasks. The first two tasks concern the situation where we have the user's rating available for a large part of objects. The third task does not require any prior knowledge about the user's ratings (i.e. the user's rating history). Local and global preferences are distinguished in the presented model. Methods for learning these preferences are discussed. Finally, experiments and future work will be described.
机译:本文着重于针对基于内容的推荐系统的用户偏好学习的正式模型。首先,确定并提出了对用户偏好学习的一些基本要求和特殊要求。介绍了三个学习任务,分别是精确的,顺序保留的和迭代的用户偏好学习任务。前两个任务涉及以下情况:我们拥有可用于大部分对象的用户评分。第三项任务不需要任何有关用户评级的先验知识(即用户的评级历史记录)。在所提出的模型中区分了本地和全局偏好。讨论了学习这些偏好的方法。最后,将描述实验和未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号