首页> 外文期刊>Computing and informatics >EFFICIENT MINING OF FUZZY ASSOCIATION RULES FROM THE PRE-PROCESSED DATASET
【24h】

EFFICIENT MINING OF FUZZY ASSOCIATION RULES FROM THE PRE-PROCESSED DATASET

机译:从预先处理的数据集中高效挖掘模糊关联规则

获取原文
获取原文并翻译 | 示例

摘要

Association rule mining is an active data mining research area. Recent years have witnessed many efforts on discovering fuzzy associations. The key strength of fuzzy association rule mining is its completeness. This strength, however, comes with a major drawback to handle large datasets. It often produces a huge number of candidate itemsets. The huge number of candidate itemsets makes it ineffective for a data mining system to analyze them. In the end, it produces a huge number of fuzzy associations. This is particularly true for datasets whose attributes are highly correlated. The huge number of fuzzy associations makes it very difficult for a human user to analyze them. Existing research has shown that most of the discovered rules are actually redundant or insignificant. In this paper, we propose a novel technique to overcome these problems; we are preprocessing the data tuples by focusing on similar behaviour attributes and ontology. Finally, the efficiency and advantages of this algorithm have been proved by experimental results.
机译:关联规则挖掘是活跃的数据挖掘研究领域。近年来,目睹了发现模糊关联的许多努力。模糊关联规则挖掘的关键在于完整性。但是,这种优势带来了处理大型数据集的主要缺点。它通常会产生大量的候选项目集。大量候选项目集使数据挖掘系统无法对其进行分析。最后,它产生了大量的模糊关联。对于属性高度相关的数据集尤其如此。大量的模糊关联使人类用户很难分析它们。现有研究表明,大多数发现的规则实际上是多余的或微不足道的。在本文中,我们提出了一种克服这些问题的新颖技术。我们通过关注相似的行为属性和本体来预处理数据元组。最后,实验结果证明了该算法的有效性和优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号