首页> 外文期刊>Computing and informatics >A TECHNIQUE TO STOCK MARKET PREDICTION USING FUZZY CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
【24h】

A TECHNIQUE TO STOCK MARKET PREDICTION USING FUZZY CLUSTERING AND ARTIFICIAL NEURAL NETWORKS

机译:基于模糊聚类和人工神经网络的股票市场预测技术

获取原文
获取原文并翻译 | 示例

摘要

Stock market prediction is essential and of great interest because successful prediction of stock prices may promise smart benefits. These tasks are highly complicated and very difficult. Many researchers have made valiant attempts in data mining to devise an efficient system for stock market movement analysis. In this paper, we have developed an efficient approach to stock market prediction by employing fuzzy C-means clustering and artificial neural network. This research has been encouraged by the need of predicting the stock market to facilitate the investors about buy and hold strategy and to make profit. Firstly, the original stock market data are converted into interpreted historical (financial) data i.e. via technical indicators. Based on these technical indicators, datasets that are required for analysis are created. Subsequently, fuzzy-clustering technique is used to generate different training subsets. Subsequently, based on different training subsets, different ANN models are trained to formulate different base models. Finally, a meta-learner, fuzzy system module, is employed to predict the stock price. The results for the stock market prediction are validated through evaluation metrics, namely mean absolute deviation, mean square error, root mean square error, mean absolute percentage error used to estimate the forecasting accuracy in the stock market. Comparative analysis is carried out for single Neural Network (NN) and existing technique neural. The obtained results show that the proposed approach produces better results than the other techniques in terms of accuracy.
机译:股票市场预测是必不可少的,并且引起人们极大的兴趣,因为成功预测股票价格可能会带来可观的收益。这些任务非常复杂且非常困难。许多研究人员在数据挖掘方面进行了英勇的尝试,以设计出一种有效的股票市场变动分析系统。在本文中,我们通过使用模糊C均值聚类和人工神经网络开发了一种有效的股票市场预测方法。由于需要预测股票市场以促进投资者进行购买和持有策略并获取利润,因此这项研究受到了鼓舞。首先,原始股票市场数据即通过技术指标转换为解释的历史(财务)数据。基于这些技术指标,创建分析所需的数据集。随后,使用模糊聚类技术生成不同的训练子集。随后,基于不同的训练子集,对不同的人工神经网络模型进行训练以制定不同的基础模型。最后,采用元学习器模糊系统模块来预测股票价格。通过评估指标对股票市场预测的结果进行验证,这些评估指标是用于估计股市预测准确性的均值绝对偏差,均方误差,均方根误差,均值绝对百分比误差。对单个神经网络(NN)和现有技术神经进行了比较分析。获得的结果表明,所提出的方法在准确性方面比其他技术产生了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号