首页> 外文期刊>Computing and informatics >KNOWLEDGE GRANULATION, ROUGH ENTROPY AND UNCERTAINTY MEASURE IN INCOMPLETE FUZZY INFORMATION SYSTEM
【24h】

KNOWLEDGE GRANULATION, ROUGH ENTROPY AND UNCERTAINTY MEASURE IN INCOMPLETE FUZZY INFORMATION SYSTEM

机译:不完全模糊信息系统中的知识粒度,粗糙熵和不确定性度量

获取原文
获取原文并翻译 | 示例

摘要

Many real world problems deal with ordering of objects instead of classifying objects, although most of research in data analysis has been focused on the latter. One of the extensions of classical rough sets to take into account the ordering properties is dominance-based rough sets approach which is mainly based on substitution of the indiscernibility relation by a dominance relation. In this paper, we address knowledge measures and reduction in incomplete fuzzy information system using the approach. Firstly, new definitions of knowledge granulation and rough entropy are given, and some important properties of them are investigated. Then, dominance matrix about the measures knowledge granulation and rough entropy is obtained, which could be used to eliminate the redundant attributes in incomplete fuzzy information system. Lastly, a matrix algorithm for knowledge reduction is proposed. An example illustrates the validity of this method and shows the method is applicable to complex fuzzy system. Experiments are also made to show the performance of the newly proposed algorithm.
机译:尽管数据分析中的大多数研究都集中在后者上,但是许多现实世界中的问题都涉及对象的排序而不是对象的分类。考虑到排序特性的经典粗糙集的扩展之一是基于优势的粗糙集方法,该方法主要基于将不可分辨关系替换为优势关系。在本文中,我们使用该方法解决知识度量和不完全模糊信息系统中的约简。首先,给出了知识粒度和粗糙熵的新定义,并研究了它们的一些重要性质。然后,获得了关于度量知识粒度和粗糙熵的优势矩阵,可用于消除不完全模糊信息系统中的冗余属性。最后提出了一种知识约简的矩阵算法。算例说明了该方法的有效性,表明该方法适用于复杂的模糊系统。实验还表明新算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号