首页> 外文期刊>Computing and informatics >NOVEL APPROACH FOR DETECTION AND REMOVAL OF MOVING CAST SHADOWS BASED ON RGB, HSV AND YUV COLOR SPACES
【24h】

NOVEL APPROACH FOR DETECTION AND REMOVAL OF MOVING CAST SHADOWS BASED ON RGB, HSV AND YUV COLOR SPACES

机译:基于RGB,HSV和YUV颜色空间的运动铸型阴影检测和去除的新方法

获取原文
获取原文并翻译 | 示例

摘要

Cast shadow affects computer vision tasks such as image segmentation, object detection and tracking since objects and shadows share the same visual motion characteristics. This unavoidable problem decreases video surveillance system performance. The basic idea of this paper is to exploit the evidence that shadows darken the surface which they are cast upon. For this reason, we propose a simple and accurate method for detection of moving cast shadows based on chromatic properties in RGB, HSV and YUV color spaces. The method requires no a priori assumptions regarding the scene or lighting source. Starting from a normalization step, we apply canny filter to detect the boundary between self-shadow and cast shadow. This treatment is devoted only for the first sequence. Then, we separate between background and moving objects using an improved version of Gaussian mixture model. In order to remove these unwanted shadows completely, we use three change estimators calculated according to the intensity ratio in HSV color space, chromaticity properties in RGB color space, and brightness ratio in YUV color space. Only pixels that satisfy threshold of the three estimators are labeled as shadow and will be removed. Experiments carried out on various video databases prove that the proposed system is robust and efficient and can precisely remove shadows for a wide class of environment and without any assumptions. Experimental results also show that our approach outperforms existing methods and can run in real-time systems.
机译:投射阴影会影响计算机视觉任务,例如图像分割,物体检测和跟踪,因为物体和阴影具有相同的视觉运动特征。这个不可避免的问题会降低视频监控系统的性能。本文的基本思想是利用阴影使被投射的表面变暗的证据。因此,我们提出了一种基于RGB,HSV和YUV颜色空间中色度属性的简单而准确的移动阴影检测方法。该方法不需要关于场景或光源的先验假设。从规范化步骤开始,我们应用canny过滤器来检测自阴影和投射阴影之间的边界。此处理仅用于第一个序列。然后,我们使用改进版本的高斯混合模型在背景和运动对象之间进行分离。为了完全消除这些不想要的阴影,我们使用了三个根据HSV颜色空间中的强度比率,RGB颜色空间中的色度属性以及YUV颜色空间中的亮度比率计算的变化估计量。仅将满足三个估计量阈值的像素标记为阴影,并将其删除。在各种视频数据库上进行的实验证明,所提出的系统是鲁棒且高效的,并且可以在广泛的环境中精确去除阴影,而无需任何假设。实验结果还表明,我们的方法优于现有方法,并且可以在实时系统中运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号