首页> 外文期刊>Computing and informatics >A NEW APPROACH OF DYNAMIC CLUSTERING BASED ON PARTICLE SWARM OPTIMIZATION AND APPLICATION IN IMAGE SEGMENTATION
【24h】

A NEW APPROACH OF DYNAMIC CLUSTERING BASED ON PARTICLE SWARM OPTIMIZATION AND APPLICATION IN IMAGE SEGMENTATION

机译:基于粒子群优化的动态聚类新方法及其在图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach of dynamic clustering based on improved Particle Swarm Optimization (PSO) and which is applied to image segmentation (called DCPSONS). Firstly, the original PSO algorithm is improved by using diversity mechanism and neighborhood search strategy. The improved PSO is then combined with the well-known data clustering k-means algorithm for dynamic clustering problem where the number of clusters has not yet been known. Finally, DCPSONS is applied to image segmentation problem, in which the number of clusters is automatically determined. Experimental results in using sixteen benchmark data sets and several images of synthetic and natural benchmark data demonstrate that the proposed DCPSONS algorithm substantially outperforms other competitive algorithms in terms of accuracy and convergence rate.
机译:本文提出了一种基于改进的粒子群优化(PSO)的动态聚类新方法,并将其应用于图像分割(称为DCPSONS)。首先,利用分集机制和邻域搜索策略对原始的PSO算法进行了改进。然后,将改进的PSO与众所周知的数据聚类k均值算法结合起来,以解决动态聚类问题,其中聚类的数目尚未得知。最后,将DCPSONS应用于图像分割问题,在该问题中自动确定聚类数。使用16个基准数据集和一些合成基准数据和自然基准数据的图像的实验结果表明,所提出的DCPSONS算法在准确性和收敛速度方面大大优于其他竞争算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号