...
首页> 外文期刊>Computers & Structures >Topology optimization considering overhang constraint in additive manufacturing
【24h】

Topology optimization considering overhang constraint in additive manufacturing

机译:考虑增材制造中悬伸约束的拓扑优化

获取原文
获取原文并翻译 | 示例
           

摘要

Structural topology optimization (Bendsoe and Kikuchi, 1988; Bendsoe and Sigmund, 2003; Deaton and Grandhi, 2014; Cheng and Olhoff, 1981; Xie and Steven, 1993) [1-5] provides a numerical tool for structural design with optimum performance. However, these structures could be too complex to be fabricated. Additive manufacturing (AM) enables the fabrication of these complex structures and is perfectly suitable for realizing the full potential of TO. However, AM has its manufacturing constraints too. The overhang constraint is one of these constraints. Components with small overhang angles or hanging features may deform, droop or warp, when fabricated using laser or electron beams in a layer-wise manner. This paper proposes a new approach to obtain optimum structural topology with consideration of the overhang constraint. We develop an effective method to estimate structural boundary normals of the optimum and intermediate designs with zigzag and blurry boundaries in SIMP by fitting local element density distribution with linear surfaces. By controlling the horizontal length of structural component, the hanging feature and too thin component are effectively suppressed. The element-wise overhang angle constraints and hanging feature constraints are aggregated as two single constraints on the volume fraction of the elements that violate these element-wise constraints. The structural topology optimization problem is solved by MMA. Numerical examples are given to demonstrate the effectiveness of the proposed algorithm. (C) 2018 Elsevier Ltd. All rights reserved.
机译:结构拓扑优化(Bendsoe和Kikuchi,1988; Bendsoe和Sigmund,2003; Deaton和Grandhi,2014; Cheng和Olhoff,1981; Xie和Steven,1993)[1-5]为具有最佳性能的结构设计提供了一种数值工具。但是,这些结构可能太复杂而无法制造。增材制造(AM)可以制造这些复杂的结构,非常适合实现TO的全部潜力。但是,AM也有其制造限制。悬伸约束是这些约束之一。当使用激光或电子束以分层方式制造时,具有较小悬垂角或悬挂特征的组件可能会变形,下垂或翘曲。本文提出了一种新的方法来获得最佳的结构拓扑,同时考虑了悬垂约束。我们开发了一种有效的方法,通过将局部元素密度分布与线性曲面拟合,可以估算SIMP中具有锯齿形和模糊边界的最佳和中间设计的结构边界法线。通过控制结构部件的水平长度,有效地抑制了悬挂特征和过薄的部件。逐个元素的悬垂角度约束和悬挂特征约束汇总为违反这些逐个元素的约束的元素体积分数的两个单一约束。 MMA解决了结构拓扑优化问题。数值例子说明了该算法的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号