首页> 外文期刊>Computers & Structures >Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems
【24h】

Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems

机译:逐次缩放算法的收敛性增强遗传算法求解连续优化问题

获取原文
获取原文并翻译 | 示例

摘要

A dynamic parameter encoding method was previously presented by Schraudolph and Belew [J Mach Learn 9 (1992) 9] for solving optimizing problems using discrete zooming factors. In contrast, the current paper proposes a successive zooming genetic algorithm (SZGA) for identifying global solutions using continuous zooming factors. To improve the local fine-tuning capability of a genetic algorithm (GA), a new method is introduced whereby the search space is zoomed around the design point with the best fitness per 100 generations. Furthermore, the reliability of the optimized solution is determined based on a theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro-genetic algorithm, and the proposed algorithm were compared as regards their ability to minimize multi-modal continuous functions and simple continuous functions. The results confirmed that the proposed SZGA significantly improved the ability of a GA to identify a precise global minimum. As an example of structural optimization, SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the conventional GAs.
机译:动态参数编码方法先前由Schraudolph和Belew提出[J Mach Learn 9(1992)9],用于解决使用离散缩放因子的优化问题。相比之下,当前论文提出了一种连续缩放遗传算法(SZGA),用于使用连续缩放因子来识别全局解。为了提高遗传算法(GA)的局部微调能力,引入了一种新方法,该方法可以使搜索空间围绕设计点缩放,并且每100代具有最佳适应性。此外,基于概率理论确定优化解决方案的可靠性。为了证明所提算法的优越性,比较了简单遗传算法,微遗传算法和所提算法在最小化多模式连续函数和简单连续函数方面的能力。结果证实,提出的SZGA显着提高了GA识别精确的全局最小值的能力。作为结构优化的一个示例,将SZGA应用于支撑点的最佳位置,以使坝结构的径向闸门中的重量最小化。与常规遗传算法相比,提出的算法确定了更精确的最优值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号