首页> 外文期刊>Computers & Structures >A comparative study of metamodeling methods for multiobjective crashworthiness optimization
【24h】

A comparative study of metamodeling methods for multiobjective crashworthiness optimization

机译:多目标耐撞性优化元模型方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The response surface methodology (RSM), which typically uses quadratic polynomials, is predominantly used for metamodeling in crashworthiness optimization because of the high computational cost of vehicle crash simulations. Research shows, however, that RSM may not be suitable for modeling highly nonlinear responses that can often be found in impact related problems, especially when using limited quantity of response samples. The radial basis functions (RBF) have been shown to be promising for highly nonlinear problems, but no application to crashworthiness problems has been found in the literature. In this study, metamodels by RSM and RBF are used for multiobjective optimization of a vehicle body in frontal collision, with validations by finite element simulations using the full-scale vehicle model. The results show that RSM is able to produce good approximation models for energy absorption, and the model appropriateness can be well predicted by ANOVA. However, in the case of peak acceleration, RBF is found to generate better models than RSM based on the same number of response samples, with the multiquadric function identified to be the most stable RBF. Although RBF models are computationally more expensive, the optimization results of RBF models are found to be more accurate.
机译:响应面方法(RSM)通常使用二次多项式,主要用于车辆耐撞性优化中的元建模,因为车辆碰撞仿真的计算成本很高。但是,研究表明,RSM可能不适合建模通常在与冲击有关的问题中发现的高度非线性响应,尤其是在使用有限数量的响应样本时。径向基函数(RBF)已被证明对高度非线性的问题很有希望,但是在文献中没有发现可用于碰撞性问题的应用。在这项研究中,RSM和RBF的元模型用于正面碰撞中车身的多目标优化,并通过使用全尺寸车辆模型的有限元模拟进行了验证。结果表明,RSM能够产生良好的能量吸收近似模型,并且模型的适当性可以通过ANOVA很好地预测。但是,在峰值加速度的情况下,基于相同数量的响应样本,发现RBF可以生成比RSM更好的模型,其中多二次函数被认为是最稳定的RBF。尽管RBF模型在计算上更昂贵,但发现RBF模型的优化结果更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号