首页> 外文期刊>Computers & Structures >Bounded-But-Unknown uncertainty optimization using design sensitivities and parallel computing: Application to MEMS
【24h】

Bounded-But-Unknown uncertainty optimization using design sensitivities and parallel computing: Application to MEMS

机译:使用设计灵敏度和并行计算的有限但未知的不确定性优化:在MEMS中的应用

获取原文
获取原文并翻译 | 示例

摘要

In the present paper uncertainty-based design optimization of structures is carried out. A description of uncertainties via bounds on the uncertainty variables is adopted. An anti-optimization technique, which searches for the combinations of uncertainties yielding the worst responses, is used to tackle these Bounded-But-Unknown uncertainties of non-convex or discontinuous nature. This anti-optimization technique is computationally very expensive and can become impractical for real world applications, in particularly when expensive numerical response evaluations are involved. In order to reduce the number of expensive numerical response evaluations, a modified anti-optimization technique is proposed in the present paper. This enhanced anti-optimization technique incorporates design sensitivities and database technique and is further modified to use parallel computing in order to increase the computational efficiency. The enhanced anti-optimization technique is studied on the basis of test examples from literature and a Microelectrome-chanical Systems (MEMS) structure. A comparison between results for the examples, clearly shows an improvement in computational efficiency for the anti-optimization technique, due to the use of sensitivities, database and parallel computing. The enhanced anti-optimization technique can be applied efficiently to general problems involving uncertainties of non-convex or discontinuous nature.
机译:在本文中,进行了基于不确定性的结构设计优化。通过不确定性变量的界限来描述不确定性。一种反优化技术,用于搜索产生最差响应的不确定性组合,用于解决这些非凸性或不连续性的有界但未知的不确定性。这种反优化技术在计算上非常昂贵,在实际应用中可能变得不切实际,尤其是在涉及昂贵的数值响应评估时。为了减少昂贵的数值响应评估的数量,本文提出了一种改进的反优化技术。这种增强的反优化技术结合了设计敏感性和数据库技术,并被进一步修改为使用并行计算,以提高计算效率。基于文献的测试示例和微机电系统(MEMS)结构,研究了增强的反优化技术。实例结果之间的比较清楚地表明,由于使用了敏感性,数据库和并行计算,因此反优化技术的计算效率有所提高。增强的反优化技术可以有效地应用于涉及非凸或不连续性不确定性的一般问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号