首页> 外文期刊>Computers & Structures >Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass
【24h】

Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass

机译:纤维增强复合材料层压板的强度,刚度和最小质量的多目标优化

获取原文
获取原文并翻译 | 示例

摘要

We present a methodology for the multi-objective optimization of laminated composite materials that is based on an integer-coded genetic algorithm. The fiber orientations and fiber volume fractions of the laminae are chosen as the primary optimization variables. Simplified micromechanics equations are used to estimate the stiffnesses and strength of each lamina using the fiber volume fraction and material properties of the matrix and fibers. The lamina stresses for thin composite coupons subjected to force and/or moment resultants are determined using the classical lamination theory and the first-ply failure strength is computed using the Tsai-Wu failure criterion. A multi-objective genetic algorithm is used to obtain Pareto-optimal designs for two model problems having multiple, conflicting, objectives. The objectives of the first model problem are to maximize the load carrying capacity and minimize the mass of a graphite/epoxy laminate that is subjected to biaxial moments. In the second model problem, the objectives are to maximize the axial and hoop rigidities and minimize the mass of a graphite/epoxy cylindrical pressure vessel subject to the constraint that the failure pressure be greater than a prescribed value.
机译:我们提出了一种基于整数编码遗传算法的多层复合材料多目标优化方法。选择薄片的纤维取向和纤维体积分数作为主要的优化变量。简化的微力学方程式用于使用纤维体积分数以及基质和纤维的材料特性来估算每个层的刚度和强度。使用经典的叠层理论确定承受力和/或弯矩合力的薄复合材料试件的层板应力,并使用Tsai-Wu破坏准则计算第一层破坏强度。对于具有多个冲突目标的两个模型问题,使用多目标遗传算法来获得帕累托最优设计。第一个模型问题的目的是使承受双轴弯矩的石墨/环氧树脂层压板的承载能力最大化并使其质量最小。在第二个模型问题中,目标是在失效压力大于规定值的约束下,最大化轴向和环向刚度,并使石墨/环氧圆柱形压力容器的质量最小化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号