首页> 外文期刊>Computers & Structures >Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks
【24h】

Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks

机译:使用人工神经网络预测大型体育馆屋顶上的风压

获取原文
获取原文并翻译 | 示例

摘要

The application of artificial neural networks (ANNs) to solve wind engineering problems has received increasing interests in recent years. This paper is concerned with developing two ANN approaches (a backpropagation neural network [BPNN] and a fuzzy neural network [FNN]) for the prediction of mean, root-mean-square (rms) pressure coefficients and time series of wind-induced pressures on a large gymnasium roof. In this study, simultaneous pressure measurements are made on a large gymnasium roof model in a boundary layer wind tunnel and parts of the model test data are used as the training sets for developing two ANN models to recognize the input-output patterns. Comparisons of the prediction results by the two ANN approaches and those from the wind tunnel test are made to examine the performance of the two ANN models, which demonstrates that the two ANN approaches can successfully predict the pressures on the entire surfaces of the large roof on the basis of wind tunnel pressure measurements from a certain number of pressure taps. Moreover, the FNN approach is found to be superior to the BPNN approach. It is shown through this study that the developed ANN approaches can be served as an effective tool for the design and analysis of wind effects on large roof structures.
机译:近年来,将人工神经网络(ANN)用于解决风力工程问题的兴趣日益浓厚。本文涉及开发两种ANN方法(反向传播神经网络[BPNN]和模糊神经网络[FNN]),以预测均压,均方根(rms)压力系数和风致压力的时间序列在大型体育馆屋顶上。在这项研究中,在边界层风洞中的大型体育馆屋顶模型上同时进行压力测量,并将部分模型测试数据用作训练集,以开发两个ANN模型以识别输入输出模式。通过两种人工神经网络方法的预测结果和风洞试验的预测结果的比较,检验了两种人工神经网络模型的性能。结果表明,两种人工神经网络方法可以成功地预测大型屋顶整个表面的压力。根据一定数量的压力抽头测量风洞压力的基础。此外,发现FNN方法优于BPNN方法。通过这项研究表明,已开发的人工神经网络方法可以用作设计和分析风对大型屋顶结构的有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号