首页> 外文期刊>Computers & Structures >Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising
【24h】

Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising

机译:使用递归最小二乘和小波消噪校正来自未知加速度计的数据

获取原文
获取原文并翻译 | 示例

摘要

Non-linear finite element analyses of structures that are subject to seismic actions require high quality accelerogram data. Raw accelerogram data needs to be adjusted to remove the influence of the transfer function of the instrument itself. This process is known as correction. Unfortunately, information about the recording instrument is often unknown or unreliable. This is most often the case for older analogue recordings. This paper uses a recursive least squares (RLS) algorithm to identify the instrument characteristics even when completely unknown. The results presented in the paper implement a modern approach to de-noising the accelerogram by employing the wavelet transform. This technique removes only those components of the signal whose amplitudes are below a certain threshold and is not therefore frequency selective. It supersedes to some extent conventional band pass filtering which requires a careful selection of cut-off frequencies, now unnecessary.
机译:受地震作用的结构的非线性有限元分析需要高质量的加速度计数据。需要调整原始加速度计数据,以消除仪器本身传递函数的影响。此过程称为校正。不幸的是,有关记录仪器的信息通常是未知的或不可靠的。对于较早的模拟录音,通常是这种情况。本文使用递归最小二乘(RLS)算法来识别仪器特征,即使完全未知。本文中提出的结果采用小波变换实现了一种现代的加速度计消噪方法。该技术仅去除幅度低于某个阈值且因此不是频率选择性信号的那些分量。它在某种程度上取代了常规的带通滤波,后者需要仔细选择截止频率,现在已经没有必要了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号