首页> 外文期刊>Computers & Structures >Numerical simulation of 3D fluid-structure interaction flow usin an immersed object method with overlapping grids
【24h】

Numerical simulation of 3D fluid-structure interaction flow usin an immersed object method with overlapping grids

机译:网格重叠的沉浸物体方法对3D流固耦合流场的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

The newly developed immersed object method (IOM) [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an immersed object method with overlapping grids. J Comput Phys 2005; 207(1): 151-72] is extended for 3D unsteady flow simulation with fluid-structure interaction (FSI), which is made possible by combining it with a parallel unstructured multigrid Navier-Stokes solver using a matrix-free implicit dual time stepping and finite volume method [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method. In: The second M.I.T. conference on computational fluid and solid mechanics, June 17-20, MIT, Cambridge, MA 02139, USA, 2003; Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method, Special issue on "Preconditioning methods: algorithms, applications and software environments. Comput Struct 2004; 82(28): 2425-36]. This uniquely combined method is then employed to perform detailed study of 3D unsteady flows with complex FSI. In the IOM, a body force term F is introduced into the momentum equations during the artificial compressibility (AC) sub-iterations so that a desired velocity distribution V_0 can be obtained on and within the object boundary, which needs not coincide with the grid, by adopting the direct forcing method. An object mesh is immersed into the flow domain to define the boundary of the object. The advantage of this is that bodies of almost arbitrary shapes can be added without grid restructuring, a procedure which is often time-consuming and computationally expensive. It has enabled us to perform complex and detailed 3D unsteady blood flow and blood-leaflets interaction in a mechanical heart valve (MHV) under physiological conditions.
机译:新开发的沉浸物体方法(IOM)[Tai CH,Zhao Y,Liew KM。使用具有重叠网格的沉浸对象方法,对移动的刚体周围的不稳定非压缩粘性流进行并行计算。 J Comput Phys 2005; 207(1):151-72]扩展为具有流固耦合(FSI)的3D非恒定流模拟,这可以通过将其与并行的非结构化多网格Navier-Stokes求解器结合使用,使用无矩阵隐式双时间步长来实现有限体积法[Tai CH,Zhao Y,Liew KM。使用非结构化多重网格方法并行计算非稳态三维不可压缩粘性流。在:第二个M.I.T.计算流体和固体力学会议,6月17日至20日,麻省理工学院,剑桥,MA 02139,美国,2003年;太极,赵Y,刘明明。使用非结构化多重网格方法对不稳定的三维不可压缩粘性流进行并行计算,有关“预处理方法:算法,应用程序和软件环境。ComputStruct 2004; 82(28):2425-36]的特殊问题。在IOM中,在人工压缩性(AC)子迭代过程中,将体力项F引入动量方程中,从而可以在和上获得所需的速度分布V_0。通过采用直接强制方法,在不需要与网格重合的物体边界内,将物体网格浸入流域中以定义物体的边界,这样做的优点是可以将几乎任意形状的物体在不进行网格重组的情况下增加了这一过程,该过程通常既耗时又计算量大,这使我们能够执行复杂而详细的3D非稳态血液d在生理条件下机械心脏瓣膜(MHV)中的血流和血叶相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号