首页> 外文期刊>Computers & Structures >Method Of Finite Spheres Solution Of Micron-scale Plasticity Based On A Strain Gradient Formulation
【24h】

Method Of Finite Spheres Solution Of Micron-scale Plasticity Based On A Strain Gradient Formulation

机译:应变梯度公式的微米级塑性有限球体求解方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Continuum "strain gradient" theories of plasticity have been developed to account for the size-dependence of micron-scale metallic materials undergoing inhomogeneous plastic deformation. A particularly promising theory has been recently proposed by Gurtin and co-workers [Anand L, Gurtin ME, Lele SP, Gething C. A one-dimensional theory of strain gradient plasticity: formulation, analysis, numerical results. J Mech Phys Solids 2005;53(7):1789-826] which has several attractive features including the ability to predict isotropic internal variable hardening, energetic hardening associated with plastic-strain gradients, and dissipative strengthening associated with plastic-strain-rate gradients which results in size-dependence of the yield stress. However, using the traditional finite element method to solve the resulting boundary value problem leads to a rapid deterioration of the solution results with increase in strain gradient. In this paper, we propose a solution to this problem by developing a computational scheme based on the meshfree method of finite spheres [De S, Bathe KJ. The method of finite spheres. Comput Mech 2000;25(4):329-45]. In this method, the shape functions are generated using the partition of unity paradigm [Yosida K. Functional analysis, vol. 5. Berlin, Heidelberg: Springer-Verlag; 1978] and are compactly supported on n-dimensional spheres. Excellent convergence rates are observed for problems in one- and two-dimensional analysis which are attributed to the higher order continuity of the approximation spaces used in this method.
机译:已经发展了连续性“应变梯度”可塑性理论,以解决经历不均匀塑性变形的微米级金属材料的尺寸依赖性。 Gurtin及其同事最近提出了一种特别有前途的理论[Anand L,Gurtin ME,Lele SP,GethingC。应变梯度可塑性的一维理论:公式,分析,数值结果。 J Mech Phys Solids 2005; 53(7):1789-826]具有几个吸引人的功能,包括预测各向同性内部变量硬化,与塑性应变梯度相关的高能硬化以及与塑性应变速率梯度相关的耗散性增强的能力这导致屈服应力的大小依赖性。但是,使用传统的有限元方法来解决所得的边值问题会导致解决方案结果的迅速恶化,并伴随着应变梯度的增加。在本文中,我们通过开发基于有限球体的无网格方法的计算方案[De S,Bathe KJ。有限球体的方法。 Comput Mech 2000; 25(4):329-45]。在这种方法中,形状函数是使用统一范式的分区生成的[Yosida K. Functional analysis,vol。 5.柏林,海德堡:施普林格出版社; [1978年],并紧紧支撑在n维球体上。对于一维和二维分析中的问题,观察到极好的收敛速度,这归因于此方法中使用的近似空间的较高阶连续性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号