首页> 外文期刊>Computers & Structures >A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks
【24h】

A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks

机译:基于神经网络的高性能混凝土抗压强度预测模型选择方法的比较

获取原文
获取原文并翻译 | 示例

摘要

This paper gives a concise overview of three approaches to nonlinear regression modelling with feedforward neural networks, involving the use of evidence framework and full Bayesian inference with Markov chain Monte Carlo stochastic sampling. The article then presents an empirical assessment of these approaches using a benchmark regression problem for compressive strength prediction of high-performance concrete. Results on applying various methods to benchmark dataset show that Bayesian approach with the MCMC sampling approximation of learning and prediction gives the best prediction accuracy.
机译:本文简要概述了使用前馈神经网络进行非线性回归建模的三种方法,其中包括使用证据框架和马尔可夫链蒙特卡洛随机抽样的完整贝叶斯推理。然后,本文使用基准回归问题对高性能混凝土的抗压强度进行了预测,对这些方法进行了经验评估。将各种方法应用于基准数据集的结果表明,贝叶斯方法与学习和预测的MCMC采样近似值可提供最佳的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号