首页> 外文期刊>Computers & Structures >Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms
【24h】

Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms

机译:使用多目标进化算法同时进行三维细长桁架塔的拓扑,形状和尺寸优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an integrated design technique to carry out simultaneous topology, shape and sizing optimisation of a three-dimensional truss structure. Design objectives include mass, compliance, natural frequencies, frequency response function (FRF), and force transmissibility (FT). The Pareto fronts are explored by using: strength Pareto evolutionary algorithm (SPEA2), population-based incremental learning (PBIL), and archived multiobjective simulated annealing (AMOSA). The results obtained from using the optimisers are compared based upon the hypervolume (HV) and generational distance (GD). It is shown that PBIL is the best for optimising compliance and natural frequency, while SPEA2 is superior when dealing with FRF and FT.
机译:本文提出了一种集成设计技术,可以对三维桁架结构同时进行拓扑,形状和尺寸优化。设计目标包括质量,柔顺性,固有频率,频率响应函数(FRF)和力传递性(FT)。使用以下方法探索Pareto前沿:强度Pareto进化算法(SPEA2),基于人口的增量学习(PBIL)和已归档的多目标模拟退火(AMOSA)。根据超量(HV)和世代距离(GD)比较使用优化器获得的结果。结果表明,PBIL是优化顺应性和固有频率的最佳选择,而SPEA2在处理FRF和FT方面表现优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号