首页> 外文期刊>Computers & Structures >Crack identification in magnetoelectroelastic materials using neural networks, self-organizing algorithms and boundary element method
【24h】

Crack identification in magnetoelectroelastic materials using neural networks, self-organizing algorithms and boundary element method

机译:基于神经网络,自组织算法和边界元方法的磁电弹性材料裂纹识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a hybrid approach that combines both supervised (neural networks) and unsupervised (self-organizing algorithms) techniques is developed for damage identification in magnetoelectroelastic (MEE) materials containing cracks. A hypersingular boundary element (BEM) formulation is used to obtain the solution to the direct problem (elastic displacements, electric and magnetic potentials) and create the corresponding training sets. Furthermore, the noise sensitivity of the resulting approach is analyzed. Results show that the proposed tool can be successfully applied to identify the location, orientation and length of different crack configurations.
机译:在本文中,开发了一种结合了监督(神经网络)和非监督(自组织算法)技术的混合方法,用于鉴定包含裂纹的磁电弹性(MEE)材料中的损伤。超奇异边界元(BEM)公式用于获得直接问题(弹性位移,电势和磁势)的解,并创建相应的训练集。此外,分析了所得方法的噪声敏感性。结果表明,所提出的工具可以成功地应用于识别不同裂纹形态的位置,方向和长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号