首页> 外文期刊>Computers & Structures >Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks
【24h】

Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks

机译:基于人工神经网络的钢筋混凝土T梁桥线性和非线性模型更新。

获取原文
获取原文并翻译 | 示例

摘要

The key parameters affecting dynamic and static responses of structural systems often change during their life cycles due to aging, deterioration, damage and rehabilitation. Model updating is a major research field that investigates numerical methods to improve simulation ability of finite element (FE) models by identifying the modified parameters in structural systems based on data collected from field experiments and/or laboratory tests. In this paper, artificial neural networks (ANNs) are used to develop an efficient method for finite element (FE) model updating of reinforced concrete (RC) T-beam bridges. The FE model of a sample bridge selected from Pennsylvania's bridge population is calibrated using neural networks trained according to datasets generated from linear and non-linear analyses separately. The simulated responses obtained from calibrated FE models are compared to the field-measured responses of the bridge to quantify accuracy of parameter estimation and success of the model updating process. The present study evinces the fact that ANNs can still be used efficiently and reliably for parameter estimation tasks under a high level of uncertainty and complexity that arises from aging and deterioration of RC bridges as well as nonlinear material properties of concrete. The study also indicates significance of non-linear response analysis for parameter identification for RC bridges, and underlines that only consideration of dynamic responses for model updating may lead to erroneous parameter predictions especially when the calibration is based on linear bridge responses.
机译:影响结构系统动态和静态响应的关键参数在生命周期中通常会由于老化,退化,损坏和修复而发生变化。模型更新是一个主要的研究领域,其研究数字方法以通过基于从现场实验和/或实验室测试收集的数据来识别结构系统中的修改参数来提高有限元(FE)模型的仿真能力。在本文中,人工神经网络(ANN)用于开发一种有效的钢筋混凝土(RC)T型梁桥梁有限元(FE)模型更新的方法。使用分别根据线性和非线性分析生成的数据集训练的神经网络,对选自宾夕法尼亚州桥梁种群的样本桥梁的有限元模型进行校准。从校准的有限元模型获得的模拟响应与桥梁的实测响应进行比较,以量化参数估计的准确性和模型更新过程的成功。目前的研究表明,在钢筋混凝土桥梁的老化和劣化以及混凝土的非线性材料特性引起的高度不确定性和复杂性的情况下,人工神经网络仍然可以有效,可靠地用于参数估计任务。该研究还表明了非线性响应分析对于RC桥梁参数识别的重要性,并强调仅考虑动态响应进行模型更新可能会导致错误的参数预测,尤其是在校准基于线性桥梁响应的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号