首页> 外文期刊>Computers & Structures >Computationally efficient discrete sizing of steel frames via guided stochastic search heuristic
【24h】

Computationally efficient discrete sizing of steel frames via guided stochastic search heuristic

机译:通过指导的随机搜索启发式算法,有效地计算钢框架的离散尺寸

获取原文
获取原文并翻译 | 示例

摘要

Recently a design-driven heuristic approach named guided stochastic search (GSS) technique has been developed by the authors as a computationally efficient method for discrete sizing optimization of steel trusses. In this study, an extension and reformulation of the GSS technique are proposed for its application to problems from discrete sizing optimization of steel frames. In the GSS, the well-known principle of virtual work as well as the information attained in the structural analysis and design stages are used together to guide the optimization process. A design wise strategy is employed in the technique where resizing of members is performed with respect to their role in satisfying strength and displacement constraints. The performance of the GSS is investigated through optimum design of four steel frame structures according to AISC-LRFD specifications. The numerical results obtained demonstrate that the GSS can be employed as a computationally efficient design optimization tool for practical sizing optimization of steel frames. (C) 2015 Elsevier Ltd. All rights reserved.
机译:最近,作者开发了一种设计驱动的启发式方法,称为引导随机搜索(GSS)技术,作为一种计算效率高的钢桁架离散尺寸优化方法。在这项研究中,提出了GSS技术的扩展和重新设计,以将其应用于钢框架离散尺寸优化的问题。在GSS中,虚拟工作的众所周知原理以及在结构分析和设计阶段获得的信息一起用于指导优化过程。在该技术中采用了一种设计明智的策略,其中根据其在满足强度和位移约束方面的作用来调整成员的大小。通过根据AISC-LRFD规范对四个钢框架结构进行优化设计,研究了GSS的性能。获得的数值结果表明,GSS可以用作计算效率的设计优化工具,用于钢框架的实际尺寸优化。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号