首页> 外文期刊>Computers & Structures >Artificial Neural Network (ANN) based microstructural prediction model for 22MnB5 boron steel during tailored hot stamping
【24h】

Artificial Neural Network (ANN) based microstructural prediction model for 22MnB5 boron steel during tailored hot stamping

机译:基于人工神经网络(ANN)的定制热冲压过程中22MnB5硼钢的组织预测模型

获取原文
获取原文并翻译 | 示例

摘要

Because of demand for lower emissions and better crashworthiness, the use of hot stamped 22MnB5 boron steel has greatly increased in manufacturing of automobile components. However, for many applications it is required that only certain regions in hot stamped parts are fully hardened whereas other regions need be more ductile. The innovative process of tailored hot stamping does this by controlling the localized microstructures through tailored cooling rates by dividing the tooling into heated and cooled zones. A barrier to optimal application of this technique is the lack of reliable phase distribution prediction model for the process.
机译:由于需要更低的排放量和更好的耐撞性,热冲压22MnB5硼钢在汽车零部件制造中的使用已大大增加。但是,对于许多应用而言,仅要求热冲压零件中的某些区域完全硬化,而其他区域则需要更具延展性。量身定制的热冲压创新工艺通过将模具分为加热区和冷却区,通过量身定制的冷却速率控制局部微结构来实现。该技术最佳应用的障碍是缺乏可靠的过程相位分布预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号