首页> 外文期刊>Computers & Structures >Hybridizing particle swarm and big bang-big crunch optimization methods to explore then exploit the design domain of large planar frame structures
【24h】

Hybridizing particle swarm and big bang-big crunch optimization methods to explore then exploit the design domain of large planar frame structures

机译:混合粒子群算法和大爆炸算法,探索并利用大型平面框架结构的设计领域

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a hybrid metaheuristic optimization method for large-scale frame structures that minimizes weight while satisfying strength and serviceability requirements. The proposed algorithm first explores then exploits (ETE) the search space by applying a hybridized particle swarm and big bang-big crunch (BB-BC) optimization technique that adjusts the influence of the local and global best designs on the selection of new candidate solutions. A discrete (stochastic) search scheme is then activated in the last stage to exploit the (local) search space near the global optimum. The method is successfully applied to three benchmark planar steel frame structures: (1) a 15-story three-bay frame, (2) a three-bay 24-story moment-resistant frame, and (3) a seven-bay 60-story building structure. The ETE approach produces optimum weights for the 15 and 24 story frame that outperform recently developed metaheuristic strategies. For the 60-story frame, optimum designs from ensemble of independent runs produce frame weights within 2% of results found using deterministic methods, with some only addressing serviceability (drift) requirements. The findings demonstrate how the proposed stochastic (local) search strategy performs minute alterations to the best design, while only permitting the creation of new designs capable of improving the (current) global best solution. ETE also appears to significantly enhance the exploitation capabilities of BB-BC method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文提出了一种用于大型框架结构的混合元启发式优化方法,该方法可以在满足强度和可维护性要求的同时将重量最小化。提出的算法首先通过应用混合粒子群和大爆炸算法(BB-BC)优化技术探索然后探索(ETE)搜索空间,该技术可调整局部和全局最佳设计对新候选解决方案选择的影响。然后在最后阶段激活离散(随机)搜索方案,以利用接近全局最优的(本地)搜索空间。该方法已成功应用于三种基准平面钢框架结构:(1)15层三层框架,(2)三层24层抗弯框架和(3)七层60层框架故事建筑结构。 ETE方法为15层和24层框架提供了最佳权重,优于最近开发的元启发式策略。对于60层框架,独立运行的整体优化设计所产生的框架重量在使用确定性方法得出的结果的2%以内,并且仅满足可维护性(漂移)的要求。研究结果表明,所提出的随机(局部)搜索策略如何对最佳设计进行细微改动,同时仅允许创建能够改善(当前)全局最佳解决方案的新设计。 ETE也似乎大大增强了BB-BC方法的开发能力。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号