首页> 外文期刊>Computers & Structures >A FETI-DP based parallel hybrid stochastic finite element method for large stochastic systems
【24h】

A FETI-DP based parallel hybrid stochastic finite element method for large stochastic systems

机译:大型随机系统的基于FETI-DP的并行混合随机有限元方法

获取原文
获取原文并翻译 | 示例

摘要

The computational cost of uncertainty propagation in a mechanics problem can become prohibitively large as the degrees of freedom (DOF) and the number of basic random variables - also referred to as stochastic dimensionality - increase. While a number of methods have been reported in the literature to address either large DOF or high stochastic dimensionality, there is no work addressing both. This work is aimed at filling this gap. Naturally, parallel computing becomes the only feasible option for these large problems. Accordingly, a parallel domain decomposition-based hybrid method combining stochastic Galerkin and Monte Carlo simulation is developed here. To achieve scalability, which is necessary for solving very large scale problems, first the dual-primal variant of the finite element tearing and interconnecting (FETI-DP) is chosen as the domain decomposition method. Then, three distinct approaches of parallel implementation are followed. Through a set of detailed numerical experiments, scalability and relative costs of computation and communication in these three approaches are studied. Finally, based on the observations in these experiments, the best approach is selected and used to solve a large three dimensional elasticity problem with high dimensional parametric uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.
机译:随着自由度(DOF)和基本随机变量的数量(也称为随机维数)增加,力学问题中不确定性传播的计算成本会变得过高。尽管文献中已经报道了许多方法来解决大自由度或高随机维数问题,但是还没有针对这两种方法的工作。这项工作旨在填补这一空白。自然,并行计算成为解决这些大问题的唯一可行选择。因此,在此开发了一种将随机Galerkin和蒙特卡罗模拟相结合的基于并行域分解的混合方法。为了实现可伸缩性,这是解决非常大规模的问题所必需的,首先,选择有限元撕裂和互连(FETI-DP)的双原始变量作为域分解方法。然后,遵循三种不同的并行实现方法。通过一组详细的数值实验,研究了这三种方法的可扩展性以及计算和通信的相对成本。最后,根据这些实验中的观察结果,选择最佳方法,并将其用于解决具有高尺寸参数不确定性的大型三维弹性问题。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号