首页> 外文期刊>Computers & Security >DIGFuPAS: Deceive IDS with GAN and function-preserving on adversarial samples in SDN-enabled networks
【24h】

DIGFuPAS: Deceive IDS with GAN and function-preserving on adversarial samples in SDN-enabled networks

机译:DIGFUPAS:欺骗IDS与GaN的欺骗ID和在支持SDN网络中的对手样本上的功能保留

获取原文
获取原文并翻译 | 示例

摘要

Showing a great potential in various domains, machine learning techniques are more and more used in the task of malicious network traffic detection to significantly enhance the ability of intrusion detection system (IDS). When associating with Software-Defined Networks (SDN), the deployment of IDSs can leverage the centralized control plane in SDN to support for large-scale network monitoring. However, machine learning-based IDSs themselves can be attacked and tricked by adversarial examples with additional perturbation from the original ones. It is vital to provide supplementary unknown traffic to evaluate and improve the resilience of IDS against variants of cyberattacks. Thus, this work explores the method of generating adversarial attack samples by Generative Adversarial Model (GAN) to deceive IDS. We propose DIGFuPAS, a framework can create attack samples which can bypass machine learning-based IDSs in SDN with the black-box manner. In this framework, instead of Vanilla GAN, we use Wassertein GAN (WGAN) to improve the ability of GAN convergence training. In addition, the strategy of preserving functional features of attack traffic is applied to maintain the operational aspect of adversarial attacks. Through our implementation and experiments on NSL-KDD and CICIDS2018 dataset, the decreased detection rate of black-box IDSs on adversarial attacks demonstrates that our proposed framework can make IDSs in SDN-enabled networks misclassify on GAN-based synthetic attacks. Also, we utilize DIGFuPAS as a tool for evaluating and improving the robustness of IDS by repetitively retraining classifiers from crafted network traffic flow.
机译:在各个领域中显示出巨大的潜力,机器学习技术越来越多地用于恶意网络流量检测的任务,以显着提高入侵检测系统(IDS)的能力。当与软件定义的网络(SDN)相关联时,IDS的部署可以利用SDN中的集中控制平面来支持大规模网络监视。然而,基于机器学习的IDS本身可以被来自原始扰动额外扰动的对抗性示例攻击和欺骗。提供补充未知的交通至关重要,以评估和改善对Cyber​​Actack的变种的IDS的抵御能力。因此,这项工作探讨了通过生成对抗性模型(GaN)产生对抗性攻击样本来欺骗ID的方法。我们提出DigFupas,框架可以创建攻击样本,可以用黑盒方式绕过SDN中的基于机器学习的IDS。在这一框架中,而不是香草甘甘,我们使用Wassertein Gan(Wan)来提高GaN融合培训的能力。此外,应用攻击流量的功能特征的策略应用于维持对抗攻击的操作方面。通过我们对NSL-KDD和Cicids2018数据集的实现和实验,对抗对抗攻击的黑匣子IDS的检测率降低表明,我们所提出的框架可以在支持SDN的网络中制作IDS,错误地对基于GAN的合成攻击进行错误分类。此外,我们利用DigFupas作为用于评估和提高IDS的稳健性的工具,通过重复培训来自制备的网络流量流程的分类器。

著录项

  • 来源
    《Computers & Security》 |2021年第10期|102367.1-102367.23|共23页
  • 作者单位

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

    Information Security Laboratory University of Information Technology Ho Chi Minh city Viet Nam Vietnam National University Ho Chi Minh city Viet Nam;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GAN; Adversarial attacks; Intrusion detection; IDS; Network anomaly detection; SDN;

    机译:甘;对抗性攻击;入侵检测;IDS;网络异常检测;SDN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号