首页> 外文期刊>Computers & Security >Security-Driven hybrid collaborative recommendation method for cloud-based iot services
【24h】

Security-Driven hybrid collaborative recommendation method for cloud-based iot services

机译:基于云的IOT服务的安全驱动的混合协作推荐方法

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of IoT (Internet of Things) systems and cloud techniques has paved the way for recommender systems to facilitate the daily life of users. However, the accompanying cybersecurity risks, such as environmental attacks and software attacks, must not be ignored. Thus, the security problem in recommender systems becomes a serious challenge for cloud-based IoT services. Moreover, most of existing collaborative recommendation algorithms mainly focus on user-item interaction relationships but seldom consider user-user or item-item co-occurrence relationships, which may affect prediction accuracy. To overcome the above shortcomings, this paper proposes a security-driven hybrid collaborative recommendation method to deal with the large-scale IoT services accessible by clouds in a more scalable and secure manner. Our proposal integrates the factorization-based latent factor model with the neighbor-based collaborative model to mine not only user-service interaction relationships but also user-user and service-service co-occurrence relationships. Moreover, the local sensitive hash (LSH) technique is adopted to speed up the neighbor searching and preserve users' sensitive information for security concerns based on hash mapping. Finally, experiment results demonstrate that the proposed method can improve prediction accuracy while guaranteeing information security.
机译:物联网(物联网)系统和云技术的快速发展已经为推荐系统提供了促进用户日常生活的方式。但是,伴随的网络安全风险,例如环境攻击和软件攻击,不得忽视。因此,推荐系统中的安全问题成为基于云的IOT服务的严重挑战。此外,大多数现有的协作推荐算法主要专注于用户项目交互关系,但很少考虑用户用户或项目 - 项目的共同发生关系,这可能影响预测准确性。为了克服上述缺点,本文提出了一种安全驱动的混合协作推荐方法,以处理云以更可扩展和安全的方式访问的大型物联网服务。我们的提案与基于邻居的协作模型集成了基于邻居的潜在因子模型,不仅是用户服务交互关系,还与用户用户和服务 - 服务共同发生关系。此外,采用局部敏感散列(LSH)技术加速邻居搜索并保护用户基于哈希映射的安全问题的敏感信息。最后,实验结果表明,该方法可以提高预测准确性,同时保证信息安全。

著录项

  • 来源
    《Computers & Security》 |2020年第10期|101950.1-101950.12|共12页
  • 作者单位

    Department of Computer Science and Engineering Nanjing University of Science and Technology China;

    Department of Computer Science and Engineering Nanjing University of Science and Technology China;

    Department of Computer Science and Engineering Nanjing University of Science and Technology China;

    Department of Computer Science Norwegian University of Science and Technology 2815 Gjvik Norway;

    Faculty of Information Technology Macau University of Science and Technology Macao;

    School of Information Science and Engineering Qufu Normal University China State Key Laboratory for Novel Software Technology Nanjing University China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Security; Collaborative recommendation; IoT services; MF; LSH;

    机译:安全;协同推荐;IOT服务;MF;LSH.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号