首页> 外文期刊>Computers & Security >Keystroke dynamics identity verification - its problems and practical solutions
【24h】

Keystroke dynamics identity verification - its problems and practical solutions

机译:击键动力学身份验证-问题和实际解决方案

获取原文
获取原文并翻译 | 示例

摘要

Password is the most widely used identity verification method in computer security domain. However, because of its simplicity, it is vulnerable to imposter attacks. Use of keystroke dynamics can result in a more secure verification system. Recently, Cho et at. (J Organ Comput Electron Commerce 10 (2000) 295) proposed autoassociative neural network approach, which used only the user's typing patterns, yet reporting a low error rate: 1.0% false rejection rate (FRR) and 0% false acceptance rate (FAR). However, the previous research had some limitations: (1) it took too long to train the model; (2) data were preprocessed subjectively by a human; and (3) a large data set was required. In this article, we propose the corresponding solutions for these limitations with an SVM novelty detector, GA-SVM wrapper feature subset selection, and an ensemble creation based on feature selection, respectively. Experimental results show that the proposed methods are promising, and that the keystroke dynamics is a viable and practical way to add more security to identity verification. (C) 2004 Elsevier Ltd. All rights reserved.
机译:密码是计算机安全领域中使用最广泛的身份验证方法。但是,由于其简单性,它容易受到冒名顶替者的攻击。按键动态的使用可以导致更安全的验证系统。最近,Cho等人。 (J Organ Comput Electron Commerce 10(2000)295)提出了自动关联神经网络方法,该方法仅使用用户的键入模式,但报告的错误率很低:错误拒绝率(FRR)为1.0%,错误接受率(FAR)为0% 。但是,先前的研究存在一些局限性:(1)训练模型花费的时间太长; (2)数据是由人主观地预处理的; (3)需要大数据集。在本文中,我们分别通过SVM新奇检测器,GA-SVM包装器特征子集选择和基于特征选择的集成创建,为这些局限性提出了相应的解决方案。实验结果表明,所提出的方法是有希望的,并且击键动力学是为身份验证增加更多安全性的可行且实用的方法。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号