首页> 外文期刊>Computers & Security >A comprehensive and efficacious architecture for detecting phishing webpages
【24h】

A comprehensive and efficacious architecture for detecting phishing webpages

机译:用于检测网络钓鱼网页的全面有效的体系结构

获取原文
获取原文并翻译 | 示例

摘要

Phishing is a web-based criminal act. Phishing sites lure sensitive information from naive online users by camouflaging themselves as trustworthy entities. Phishing is considered an annoying threat in the field of electronic commerce. Due to the short lifespan of phishing webpages and the rapid advancement of phishing techniques, maintaining blacklists, white-lists or employing solely heuristics-based approaches are not particularly effective. The impact of phishing can be largely mitigated by adopting a suitable combination of all these techniques. In this study, the characteristics of legitimate and phishing webpages were investigated in depth, and based on this analysis, we proposed heuristics to extract 15 features from such webpages. These heuristic results were fed as an input to a trained machine learning algorithm to detect phishing sites. Before applying heuristics to the webpages, we used two preliminary screening modules in this system. The first module, the preapproved site identifier, checks webpages against a private white-list maintained by the user, and the second module, the Login Form Finder, classifies webpages as legitimate when there are no login forms present. These modules help to reduce superfluous computation in the system and in addition reducing the rate of false positives without compromising on the false negatives. By using all of these modules, we are able to classify webpages with 99.8% precision and a 0.4% of false positive rate. The experimental results indicate that this method is efficient for protecting users from online identity attacks.
机译:网络钓鱼是一种基于网络的犯罪行为。网络钓鱼网站通过伪装成可信赖的实体来吸引天真的在线用户的敏感信息。网络钓鱼被认为是电子商务领域中令人讨厌的威胁。由于网络钓鱼网页的生命周期短以及网络钓鱼技术的飞速发展,维护黑名单,白名单或仅使用基于启发式的方法并不是特别有效。通过采用所有这些技术的适当组合,可以大大减轻网络钓鱼的影响。在这项研究中,对合法网页和网上诱骗网页的特征进行了深入研究,并在此分析的基础上,我们提出了启发式方法,从此类网页中提取15个特征。这些启发式结果被输入到经过训练的机器学习算法中,以检测网络钓鱼站点。在将启发式方法应用于网页之前,我们在该系统中使用了两个初步筛选模块。第一个模块,即预先批准的站点标识符,对照用户维护的私人白名单检查网页,第二个模块,即“登录表单查找器”,在不存在登录表单时将网页分类为合法。这些模块有助于减少系统中的多余计算,此外还可以减少误报率,而不会影响误报率。通过使用所有这些模块,我们能够以99.8%的精度和0.4%的误报率对网页进行分类。实验结果表明,该方法可有效保护用户免受在线身份攻击。

著录项

  • 来源
    《Computers & Security》 |2014年第2期|23-37|共15页
  • 作者单位

    Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamilnadu, India;

    Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore, Tamilnadu, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Phishing; Anti-phishing; Anti-phishing framework; E-commerce security; Machine learning;

    机译:网络钓鱼;反网络钓鱼;反网络钓鱼框架;电子商务安全;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号