首页> 外文期刊>Computers & Security >Android resource usage risk assessment using hidden Markov model and online learning
【24h】

Android resource usage risk assessment using hidden Markov model and online learning

机译:使用隐马尔可夫模型和在线学习进行Android资源使用风险评估

获取原文
获取原文并翻译 | 示例

摘要

With Android devices users are allowed to install third-party applications from various open markets. This raises security and privacy concerns since the third-party applications may be malicious. Unfortunately, the increasing sophistication and diversity of the malicious Android applications render the conventional defenses techniques ineffective, which results in a large number of malicious applications to remain undetected. In this paper we present XDroid, an Android application and resource risk assessment framework based on the Hidden Markov Model (HMM). In our approach, we first map the applications' behaviors into an observation set, and we attach timestamps to some observations in the set. We show that our novel use of temporal behavior tracking can significantly improve the malware detection accuracy, and that the HMM can generate security alerts when suspicious behaviors are detected. Furthermore, we introduce an online learning model to integrate the input from users and provide adaptive risk assessment. We evaluate our model through a set of experiments on the DREBIN benchmark malware dataset. Our evaluation results demonstrate that the proposed model can accurately assess the risk levels of malicious applications and provide adaptive risk assessment based on user input.
机译:使用Android设备,允许用户安装来自各种开放市场的第三方应用程序。由于第三方应用程序可能是恶意的,因此这引起了安全性和隐私问题。不幸的是,恶意Android应用程序的日益复杂和多样性使常规防御技术无效,这导致大量恶意应用程序无法被检测到。在本文中,我们介绍了XDroid,这是一个基于隐马尔可夫模型(HMM)的Android应用程序和资源风险评估框架。在我们的方法中,我们首先将应用程序的行为映射到一个观察集中,然后将时间戳附加到该集中的一些观察上。我们表明,我们对时间行为跟踪的新颖使用可以显着提高恶意软件的检测准确性,并且当检测到可疑行为时,HMM可以生成安全警报。此外,我们引入了一种在线学习模型来整合用户的输入并提供自适应风险评估。我们通过对DREBIN基准恶意软件数据集进行一组实验来评估我们的模型。我们的评估结果表明,该模型可以准确评估恶意应用程序的风险水平,并根据用户输入提供自适应风险评估。

著录项

  • 来源
    《Computers & Security》 |2017年第3期|90-107|共18页
  • 作者单位

    Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA;

    Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA;

    Department of Computer Science, Purdue University, West La/ayette, IN, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smartphone; Permission; App behavior; Risk computation; Privacy;

    机译:手机;允许;应用行为;风险计算;隐私;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号