首页> 外文期刊>Computers & operations research >Data-driven branching and selection for lot-sizing and scheduling problems with sequence-dependent setups and setup carryover
【24h】

Data-driven branching and selection for lot-sizing and scheduling problems with sequence-dependent setups and setup carryover

机译:数据驱动的分支和选择序列依赖设置和设置携带的批量大小和调度问题

获取原文
获取原文并翻译 | 示例

摘要

The capacitated lot-sizing and machine scheduling problem with sequence-dependent setup time and setup carryover is a challenging problem with a wide application in industries. For the problem, two mixed integer programming models are proposed in order to explore their relative efficiencies in obtaining optimal solutions and linear programming relaxation lower bounds. Furthermore, due to the fact that the complicating constraints involve pairs of items (the sequence-dependent setups) and pairs of consecutive periods (the setup carryovers), making it difficult to decompose the problem per item or per period, we instead present a Dantzig-Wolfe decomposition reformulation per machine to improve lower bounds. We propose a branching and selection method to solve the problem, in which a collection of variables rather than individual variables are put into a data-driven process to generate useful information which is then adopted in the branching and selection process. Extensive numerical experiments show that the proposed algorithm can obtain numerically near-optimal solutions for small-scale problems and outperforms CPLEX and other heuristics in terms of both solution quality and runtime when the scale of instances increases. More experiments have been conducted to extract some insightful features related to the model and algorithm.
机译:具有序列相关的设置时间和设置携带的电容批量和机器调度问题是具有广泛应用程序的具有挑战性的问题。出于问题,提出了两个混合整数编程模型,以探讨获得最佳解决方案和线性编程放松下限的相对效率。此外,由于复杂的约束涉及成对项目(依赖依赖的设置)和连续时段的对(设置携带),使得难以将问题分解为每个项目或每个时期,而是呈现一个dantzig -Wolfe每台机器的分解重新编译,以改善下限。我们提出了一种解决问题的分支和选择方法,其中将变量的集合而不是单个变量放入数据驱动的过程中以产生在分支和选择过程中采用的有用信息。广泛的数值实验表明,该算法可以在实例规模增加的情况下,在溶液质量和运行时间方面可以获得数值近乎最佳的解决方案,并且在解决方案质量和运行时优于CPLEX和其他启发式。已经进行了更多的实验以提取与模型和算法相关的一些有识别功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号