首页> 外文期刊>Computers & operations research >Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
【24h】

Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations

机译:具有多个子种群的新型变异策略的自适应差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally. (C) 2015 Elsevier Ltd. All rights reserved.
机译:事实证明,差分进化(DE)算法是解决全局数值优化问题的一种非常有效的方法,引起了科研人员的极大关注。通常,大多数DE算法仅通过使用某些类型的DE运算符来进化一个种群。但是,从本质上观察,可以通过使用工作专业化的概念来提高工作效率,在该概念中,整个团队应根据其能力分为几个负责不同任务的小组。受此现象的启发,本文设计了一种新颖的基于自适应多亚群的DE算法,即MPADE,该算法根据适应度值将亲本分为三个亚群,然后分别执行三种新颖的DE策略。承担开发或勘探的责任。此外,设计了一种简单而有效的自适应方法来调整三种DE策略中的参数,并提出了一种替换策略,以充分利用试验矢量和目标矢量中的有用信息,从而提高了优化性能。为了验证MPADE的有效性,已对55个基准功能和15个实际问题进行了测试。与其他DE变体相比,MPADE在大多数基准测试问题和实际问题中均表现更好。此外,还对MPADE组件的影响及其参数敏感性进行了实验分析。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号