首页> 外文期刊>Computers & mathematics with applications >Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems
【24h】

Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems

机译:椭圆最优控制问题的混合有限元方法的误差估计和超收敛

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems. The gradient for our method belongs to the square integrable space instead of the classical H(div; Omega) space. The state and co state are approximated by the P-0(2)-P-1 (velocity-pressure) pair arid the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates in H-1-norm for the state and the co-state scalar functions, a priori error estimates in (L-2)(2) norm for the state and the co-state vector functions and a priori error estimates in L-2-norm for the control function. Then, using postprocessing projection operator, We derive a superconvergence result for the control variable. Next, we get a priori error estimates in L-2-norm for the state and the co-state scalar functions. Finally, a numerical example is given to demonstrate the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了椭圆最优控制问题的混合有限元方法的误差估计和超收敛性。我们的方法的梯度属于正方形可积空间,而不是经典的H(div; Omega)空间。状态和共态由P-0(2)-P-1(速度-压力)对近似,而控制变量则由分段常数函数近似。首先,我们针对状态和共态标量函数在H-1-范数中得出先验误差估计,针对状态和共态向量函数在(L-2)(2)范数中得出先验误差估计, L-2-范数中控制函数的先验误差估计。然后,使用后处理投影算子,我们得出控制变量的超收敛结果。接下来,我们在L-2-范数中获得状态和共状态标量函数的先验误差估计。最后,通过数值例子说明了理论结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号