首页> 外文期刊>Computers & mathematics with applications >An a priori error analysis for a projection based variational multiscale finite element method for Oseen problems in a time-dependent domain
【24h】

An a priori error analysis for a projection based variational multiscale finite element method for Oseen problems in a time-dependent domain

机译:基于投影的变分性多尺度有限元方法的先验误差分析,用于时间依赖域中的OSEEN问题

获取原文
获取原文并翻译 | 示例

摘要

Stability and error estimates for a projection based variational multiscale finite element scheme for Oseen problem in a time-dependent domain are derived in this paper. The use of Geometric Conservation Law (GCL) provides an unconditional stable scheme, whereas a restriction on the time-step needs to be imposed to obtain stability estimates independent of the mesh velocity when GCL is violated. Further, a priori error estimate is derived for the semi-discrete problem obtained with the backward Euler time discretization. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文推导出在时间依赖域中的对OSEEN问题的投影的基于变化多尺度有限元方案的稳定性和误差估计。几何守恒法(GCL)的使用提供了无条件的稳定方案,而需要对时间步骤进行限制,以获得与GCL侵犯GCL时无关的稳定性估计。此外,导出用于以后向欧拉时间离散化获得的半离散问题的先验误差估计。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号