首页> 外文期刊>Computers & mathematics with applications >Approximations of nonlinear phenomena arising in angular deviations of light rays that emerge from prisms
【24h】

Approximations of nonlinear phenomena arising in angular deviations of light rays that emerge from prisms

机译:由棱镜发出的光线的角度偏差引起的非线性现象的近似值

获取原文
获取原文并翻译 | 示例

摘要

Monochromatic light rays incident from some directions on a glass prism emerge from the prism with their direction changed. For many thick prisms, emerging light rays are obscured at a boundary. The purpose of this paper is to show that particular light ray deviations can be approximated by polynomials of varying degree over a domain of incident angles. The angles of deviation depend on the apex angle, the direction of incidence with respect to the prism, and the material of the prism. For a prism in air, the incident direction is allowed to vary for a chosen range of apex angles. For each apex angle value and each incident direction, the corresponding ray deviation values are calculated. The theoretical equations for the extremes of angular deviation are nonlinear and awkward to use. Because of their ease of application and goodness of fit, polynomials of varying degree and nature are chosen to approximate these nonlinear equations. Graphical comparisons are made between these approximating polynomial equations and the corresponding exact nonlinear extrema of angular deviation equations. We show that these cumbersome nonlinear equations can very confidently be replaced by their much simpler specific polynomial least-squares approximating equations. The most accurate and easily computed of these approximating equations can then more readily be used in further computations.
机译:从某些方向入射到玻璃棱镜上的单色光线会随着方向的改变而从棱镜出射。对于许多厚棱镜,在边界处会遮挡出射出的光线。本文的目的是表明可以通过在入射角范围内变化程度的多项式来近似特定的光线偏差。偏斜角取决于顶角,相对于棱镜的入射方向以及棱镜的材料。对于空气中的棱镜,允许在选定的顶角范围内改变入射方向。对于每个顶角值和每个入射方向,计算相应的光线偏离值。极端角度偏差的理论方程式是非线性的,难以使用。由于它们的易用性和拟合优度,选择了不同程度和性质的多项式来近似这些非线性方程。在这些近似多项式方程与相应的角度偏差方程的精确非线性极值之间进行图形比较。我们证明了这些繁琐的非线性方程组可以非常自信地由它们更简单的特定多项式最小二乘近似方程式代替。这些近似方程式中最精确,最容易计算的然后可以更容易地用于进一步的计算中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号