首页> 外文期刊>Computers & mathematics with applications >Sar Image Segmentation Based On Mixture Context And Wavelet Hidden-class-label Markov Random Field
【24h】

Sar Image Segmentation Based On Mixture Context And Wavelet Hidden-class-label Markov Random Field

机译:基于混合上下文和小波隐类标签马尔可夫随机场的Sar图像分割

获取原文
获取原文并翻译 | 示例

摘要

In order to suppress the effect of multiplicative speckle noise on Synthetic Aperture Radar (SAR) image segmentation, a new SAR image segmentation algorithm is proposed based on the mixture context and the wavelet hidden-class-label Markov Random Field (MRF). In our paper, a wavelet mixture heavy-tailed model is constructed, and the hidden-class-label MRF is extended to the wavelet domain to suppress the effect of speckle noise. The multiscale segmentation with overlapping window is presented here to segment the finest scale of stationary wavelet transform (SWT) domain, and the classical segmentation method is still utilized at the coarse scales of discrete wavelet transform (DWT) domain, moreover, a mixture context model is proposed to combine the two different segmentation methods. Finally, a new maximum a posteriori (MAP) classification is obtained. The experimental results demonstrate that our segmentation method outperforms several other segmentation methods.
机译:为了抑制斑点噪声对合成孔径雷达(SAR)图像分割的影响,提出了一种基于混合上下文和小波隐类标签马尔可夫随机场(MRF)的SAR图像分割算法。在本文中,构造了一个小波混合重尾模型,并将隐藏类标签MRF扩展到小波域以抑制斑点噪声的影响。本文提出了具有重叠窗口的多尺度分割方法,以分割最小尺度的平稳小波变换(SWT)域,而经典的分割方法仍在离散小波变换(DWT)域的粗尺度上使用,此外,还使用了混合上下文模型建议结合两种不同的分割方法。最后,获得了新的最大后验(MAP)分类。实验结果表明,我们的分割方法优于其他几种分割方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号