首页> 外文期刊>Computers & mathematics with applications >Granulation-based symbolic representation of time series and semi-supervised classification
【24h】

Granulation-based symbolic representation of time series and semi-supervised classification

机译:基于粒度的时间序列和半监督分类的符号表示

获取原文
获取原文并翻译 | 示例

摘要

We present a semi-supervised time series classification method based on co-training which uses the hidden Markov model (HMM) and one nearest neighbor (1-NN) as two learners. For modeling time series effectively, the symbolization of time series is required and a new granulation-based symbolic representation method is proposed in this paper. First, a granule for each segment of time series is constructed, and then the segments are clustered by spectral clustering applied to the formed similarity matrix. Using four time series datasets from UCR Time Series Data Mining Archive, the experimental results show that proposed symbolic representation works successfully for HMM. Compared with the supervised method, the semi-supervised method can construct accurate classifiers with very little labeled data available.
机译:我们提出了一种基于协同训练的半监督时间序列分类方法,该方法使用隐马尔可夫模型(HMM)和一个最近邻居(1-NN)作为两个学习者。为了对时间序列进行有效建模,需要对时间序列进行符号化,并提出了一种新的基于粒度的符号表示方法。首先,为时间序列的每个片段构造一个颗粒,然后通过应用到形成的相似性矩阵的光谱聚类对片段进行聚类。使用UCR时间序列数据挖掘档案库中的四个时间序列数据集,实验结果表明,所提出的符号表示对于HMM成功地起作用。与监督方法相比,半监督方法可以构建具有很少标记数据的准确分类器。

著录项

  • 来源
    《Computers & mathematics with applications》 |2011年第9期|p.3581-3590|共10页
  • 作者单位

    School of Computer Science and Technology, Dalian University ofTechnology, Dalian 116023, China,Department of Computer Science, Sanjose State University, San Jose, CA 95192, USA;

    School of Computer Science and Technology, Dalian University ofTechnology, Dalian 116023, China;

    School of Computer Science and Technology, Dalian University ofTechnology, Dalian 116023, China;

    Department of Computer Science, Sanjose State University, San Jose, CA 95192, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hidden markov model; semi-supervised; granulation; symbolic representation;

    机译:隐藏的马尔可夫模型;半监督造粒符号表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号