首页> 外文期刊>IEEE Transactions on Computers >Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory
【24h】

Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory

机译:使用排队理论的异构云服务器性能分析

获取原文
获取原文并翻译 | 示例

摘要

In this article, we consider the problem of selecting appropriate heterogeneous servers in cloud centers for stochastically arriving requests in order to obtain an optimal tradeoff between the expected response time and power consumption. Heterogeneous servers with uncertain setup times are far more common than homogenous ones. The heterogeneity of servers and stochastic requests pose great challenges in relation to the tradeoff between the two conflicting objectives. Using the Markov decision process, the expected response time of requests is analyzed in terms of a given number of available candidate servers. For a given system availability, a binary search method is presented to determine the number of servers selected from the candidates. An iterative improvement method is proposed to determine the best servers to select for the considered objectives. After evaluating the performance of the system parameters on the performance of algorithms using the analysis of variance, the proposed algorithm and three of its variants are compared over a large number of random and real instances. The results indicate that proposed algorithm is much more effective than the other four algorithms within acceptable CPU times.
机译:在本文中,我们考虑在云中心中选择适当的异构服务器的问题,以便在预期的响应时间和功耗之间获得最佳权衡。具有不确定的设置时间的异构服务器比均匀的服务更常见。服务器和随机请求的异质性与两个相互矛盾的目标之间的权衡有关的巨大挑战。使用Markov决策过程,根据给定数量的可用候选服务器来分析请求的预期响应时间。对于给定的系统可用性,提出了二进制搜索方法以确定从候选者中选择的服务器的数量。提出了一种迭代改进方法来确定为所考虑的目标选择最好的服务器。在使用方差分析中评估系统参数的性能之后,在大量随机和实际情况下比较了所提出的算法和三种变体。结果表明,所提出的算法比可接受的CPU时间内的其他四种算法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号