首页> 外文期刊>Computers, IEEE Transactions on >IO Workload Characterization Revisited: A Data-Mining Approach
【24h】

IO Workload Characterization Revisited: A Data-Mining Approach

机译:IO工作负载特性再探:一种数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Over the past few decades, IO workload characterization has been a critical issue for operating system and storage community. Even so, the issue still deserves investigation because of the continued introduction of novel storage devices such as solid-state drives (SSDs), which have different characteristics from traditional hard disks. We propose novel IO workload characterization and classification schemes, aiming at addressing three major issues: (i) deciding right mining algorithms for IO traffic analysis, (ii) determining a feature set to properly characterize IO workloads, and (iii) defining essential IO traffic classes state-of-the-art storage devices can exploit in their internal management. The proposed characterization scheme extracts basic attributes that can effectively represent the characteristics of IO workloads and, based on the attributes, finds representative access patterns in general workloads using various clustering algorithms. The proposed classification scheme finds a small number of representative patterns of a given workload that can be exploited for optimization either in the storage stack of the operating system or inside the storage device.
机译:在过去的几十年中,IO工作负载表征一直是操作系统和存储社区的关键问题。即使如此,由于继续引入新颖的存储设备(例如固态驱动器(SSD)),该问题仍值得调查,该存储设备具有与传统硬盘不同的特性。我们提出了新颖的IO工作负载表征和分类方案,旨在解决三个主要问题:(i)确定用于IO流量分析的正确挖掘算法,(ii)确定可正确表征IO工作负载的功能集,以及(iii)定义基本IO流量一流的存储设备可以在其内部管理中加以利用。提出的表征方案提取可以有效表示IO工作负载特征的基本属性,并基于这些属性,使用各种聚类算法找到一般工作负载中的代表性访问模式。提出的分类方案找到了给定工作负载的少量代表性模式,这些模式可以在操作系统的存储堆栈中或存储设备内部用于优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号