首页> 外文期刊>Computers & Graphics >Hessian-constrained detail-preserving 3D implicit reconstruction from raw volumetric dataset
【24h】

Hessian-constrained detail-preserving 3D implicit reconstruction from raw volumetric dataset

机译:原始体积数据集的Hessian约束的细节保留3D隐式重构

获取原文
获取原文并翻译 | 示例

摘要

Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimizing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to flexibly define derivative constraints up to the second order via intuitively placing contours on the cross sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail preserving local implicit representation while combating certain difficulties due to ambiguous image regions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. To this end, we propose several novel technical elements, including data-specific importance sampling for adaptive spherical-cover generation, close sheet determination based on distinguishable local samples, and parallel acceleration for local least squares fitting. Moreover, we conduct extensive experiments on some volumetric images with blurry object boundaries, and make comprehensive, quantitative performance evaluation between our method and the state-of-the-art radial basis function based techniques. And we also apply our method to two practical applications. All the results demonstrate our method's advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling. (C) 2017 Elsevier Ltd. All rights reserved.
机译:由于精确和有效的形状建模方面的挑战,下游常规应用很难深入利用大量常规获取的原始体积数据集。本文通过迭代优化Hessian约束的局部隐式曲面,系统地倡导用于原始体积数据集的交互式3D形状建模框架。关键思想是将基于轮廓的交互式分割合并到广义局部隐式曲面重构中。我们的框架允许用户通过直观地在体积图像的横截面上放置轮廓并微调Hessian矩阵的特征向量框架,灵活地定义直至二阶的导数约束。它可以保留局部隐式表示的详细信息,同时还可以解决由于图像区域模棱两可,低质量的不规则数据,封闭的表以及庞大的系数所带来的某些困难,这些额外的计算负担会导致这些困难。为此,我们提出了几种新颖的技术元素,包括用于自适应球面覆盖生成的特定于数据的重要性采样,基于可区分的局部样本的闭合纸确定以及局部最小二乘拟合的平行加速度。此外,我们对一些带有模糊对象边界的体积图像进行了广泛的实验,并在我们的方法和基于最新径向基函数的技术之间进行了全面,定量的性能评估。并且我们还将我们的方法应用于两个实际应用。所有结果都证明了我们方法在形状建模的准确性,细节保留,效率和多功能性方面的优势。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号