首页> 外文期刊>Computers,environment and urban systems >Visualizing gridded time series data with self organizing maps: An application to multi-year snow dynamics in the Northern Hemisphere
【24h】

Visualizing gridded time series data with self organizing maps: An application to multi-year snow dynamics in the Northern Hemisphere

机译:使用自组织图可视化网格化的时间序列数据:在北半球多年积雪动力学中的应用

获取原文
获取原文并翻译 | 示例

摘要

Gridded time-series data are increasingly available for climatology research. Microwave imagery of snow water equivalent (SWE) has been accumulated at daily basis for over two decades, but complex spatial-temporal patterns in SWE dataset pose great challenges for exploration and interpretation. This paper introduces the use of several perspectives from a tri-space conceptualization of a time series of SWE grids combined with dimensionality reduction via the self-organizing map (SOM) method. While SOM has been predominantly viewed as a clustering mechanism within climatology research, we expand the visual-analytic potential of SOM for climate research with a series of conceptual, computational, and visual transformations. Specifically, we apply a medium-resolution SOM to an SWE dataset covering the Northern Hemisphere over a 20-year period, with high temporal resolution. Through clustering and visualization a number of distinct SWE patterns are identified, including mountainous, coastal, and continental regions. A subset of cells from six areas are selected for transition analysis, including mountainous (Sierra Nevada, Western Himalaya, Eastern Himalaya) and continental (central Siberia, western Russia and Midwest United States) regions. By combining with trajectory analysis, this SOM documents notable transitions in seasonal SWE accumulation and melt patterns in mountain ranges, suggesting that SWE in some geographic locations alternates between different discrete annual patterns. In the Sierra Nevada, transitions to classes with high SWE are shown to be related to the Southern Oscillation Index, demonstrating that the annual patterns and transitions in SWE regime identified by the SOM correspond to synoptic climate conditions.
机译:网格时间序列数据越来越多地用于气候研究。每天已经积累了超过二十年的雪水当量(SWE)微波图像,但是SWE数据集中复杂的时空格局对勘探和解释提出了巨大挑战。本文通过自组织图(SOM)方法结合SWE网格的时间序列的三空间概念化和降维,介绍了几种视角的用法。尽管SOM在气候学研究中主要被视为聚类机制,但我们通过一系列概念,计算和视觉转换扩大了SOM在气候研究中的视觉分析潜力。具体来说,我们将中等分辨率的SOM应用于涵盖北半球长达20年的SWE数据集,具有较高的时间分辨率。通过聚类和可视化,可以识别出许多不同的SWE模式,包括山区,沿海和大陆地区。从六个区域中选择了一个子集进行过渡分析,包括山区(内华达山脉,喜马拉雅西部,喜马拉雅东部)和大陆性(西伯利亚中部,俄罗斯西部和美国中西部)区域。通过结合轨迹分析,该SOM记录了季节性SWE积累和山脉融化模式的显着转变,表明某些地理位置的SWE在不同的离散年度模式之间交替。在内华达山脉,向西南偏高等级的过渡与南部涛动指数有关,表明由SOM确定的西南偏西地区的年度模式和过渡与天气气候条件相对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号