首页> 外文期刊>Computer vision and image understanding >Fast video segment retrieval by Sort-Merge feature selection, boundary refinement, and lazy evaluation
【24h】

Fast video segment retrieval by Sort-Merge feature selection, boundary refinement, and lazy evaluation

机译:通过分类合并特征选择,边界细化和延迟评估快速检索视频片段

获取原文
获取原文并翻译 | 示例

摘要

We present a fast video retrieval system with three novel characteristics. First, it exploits the methods of machine learning to construct automatically a hierarchy of small subsets of features that are progressively more useful for indexing. These subsets are induced by a new heuristic method called Sort-Merge feature selection, which exploits a novel combination of Fastmap for dimensionality reduction and Mahalanobis distance for likelihood determination. Second, because these induced feature sets form a hierarchy with increasing classification accuracy, video segments can be segmented and categorized simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their temporal boundaries. Third, the feature set hierarchy enables an efficient implementation of query systems by the approach of lazy evaluation, in which new queries are used to refine the retrieval index in real-time. We analyze the performance of these methods, and demonstrate them in the domain of a 75-min instructional video and a 30-min baseball video.
机译:我们提出了具有三个新颖特征的快速视频检索系统。首先,它利用机器学习的方法来自动构建功能的小子集的层次结构,这些层次结构对于索引的使用越来越有用。这些子集由一种称为排序合并特征选择的新启发式方法诱导,该方法利用Fastmap的新颖组合进行降维,将Mahalanobis距离进行新颖性确定。其次,由于这些诱导的特征集形成具有更高分类精度的层次结构,因此可以以粗略的方式同时对视频段进行分割和分类,从而高效,逐步地检测和细化其时间边界。第三,功能集层次结构通过懒惰评估的方法实现了查询系统的有效实现,在这种方法中,新查询用于实时优化检索索引。我们分析了这些方法的性能,并在75分钟的教学视频和30分钟的棒球视频中进行了演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号