首页> 外文期刊>Computer standards & interfaces >PP-OCQ: A distributed privacy-preserving optimal closeness query scheme for social networks
【24h】

PP-OCQ: A distributed privacy-preserving optimal closeness query scheme for social networks

机译:PP-OCQ:社交网络的分布式隐私保留最佳闭合查询方案

获取原文
获取原文并翻译 | 示例

摘要

Optimal closeness query in social networks requires obtaining the social datasets from each user so that he/she finds out a shortest social distance with any target user. For example, we can make friends in terms of the most similar social relationship of family background, education level and hobbies etc. Unfortunately, social data concerning user's attributes might reveal personal sensitive information and be exploited maliciously. Considering the above privacy-revealing issues, this paper proposes a Privacy-Preserving Optimal Closeness Query (PP-OCQ) scheme, which achieves the secure optimal closeness query in a distributed manner without revealing the users' sensitive information. We construct an equivalent cost graph where all users' information are encrypted by his/her public key and the data are authenticated by signature. It employs the ElGamal Cryptosystem to achieve the privacy protection in social networks, and gives an optimal closeness query protocol without leaking the users' sensitive information on homomorphic user ciphertexts. Then it follows the routing protocol, distributed Bellman-Ford shortest-paths protocol, to query the optimal closeness through the users' message propagation in multiple iterations. The direction of propagation is controlled by some indicators so that each user performs corresponding operations based on homomorphism property and fails to obtain other user's information due to the masking of random numbers. Our analysis and simulations show that the proposed scheme is efficient in terms of computation cost and communication overhead.
机译:社交网络中的最佳闭合性查询需要从每个用户获取社交数据集,以便他/她发现与任何目标用户的最短社交距离。例如,我们可以在家庭背景,教育水平和爱好等方面的最相似的社交关系中交朋友。有关用户属性的社交数据可能会揭示个人敏感信息并恶意地利用。考虑到上述隐私问题,本文提出了一种隐私保留的最佳闭合查询(PP-OCQ)方案,其以分布式方式实现了安全的最佳亲密度查询,而不会揭示用户的敏感信息。我们构建一个等效的成本图表,其中所有用户信息由他/她的公钥加密,数据通过签名进行认证。它采用Elgamal Cryptosystem来实现社交网络中的隐私保护,并在不泄露同性恋用户密文上的用户敏感信息的情况下提供最佳的亲密性查询协议。然后,它遵循路由协议,分布式Bellman-Ford最短路径协议,通过多个迭代中的用户的消息传播查询最佳闭合。传播方向由一些指示器控制,使得每个用户基于同性恋性能执行相应的操作,并且由于随机数的屏蔽而无法获得其他用户的信息。我们的分析和仿真表明,该方案在计算成本和通信开销方面是有效的。

著录项

  • 来源
    《Computer standards & interfaces》 |2021年第2期|103484.1-103484.9|共9页
  • 作者单位

    School of Computers Hubei University of Technology Wuhan 430068 China;

    School of Computers Hubei University of Technology Wuhan 430068 China;

    School of Computers Hubei University of Technology Wuhan 430068 China State Key Laboratory of Cryptology P.O. Box 5159 Beijing 100878 China School of Computer Science and Information Security Guilin University of Electronic Technology Guilin 541004 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social network; Shortest social distance; Privacy protection; Homomorphic encryption;

    机译:社交网络;最短的社会距离;隐私保护;同性恋加密;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号