首页> 外文期刊>Computer standards & interfaces >Predicting the security threats of internet rumors and spread of false information based on sociological principle
【24h】

Predicting the security threats of internet rumors and spread of false information based on sociological principle

机译:基于社会学原理预测互联网谣言的安全威胁和虚假信息的传播

获取原文
获取原文并翻译 | 示例

摘要

With the fast-growing IoT, regular connectivity through a range of heterogeneous intelligent devices across the Social Online Networks (SON) is feasible and effective to analyze sociological principles. Therefore, Increased user contributions, including web posts, videos and reviews slowly impact the lives of people in the recent past, which triggers volatile knowledge dissemination and undermine protection through gossip dissemination, disinformation, and offensive online debate. Based on the early diffusion status, the goal of this research is to forecast the popularity of online content reliably in the future. Though conventional prediction models are focused primarily on the discovery or integration of a network functionality into a changing time mechanism has been considered as unresolved issues and it has been resolved using Predicting The Security Threats of Internet Rumors (PSTIR) and Spread of False Information Based On Sociological (SFIBS) model with sociology concept. In this paper, the proportion of trustworthy Facebook fans who post regularly in early and future popularity has been analyzed linearly using PSTIR and SFIBS methods. Facebook statistics remind us that mainstream fatigue is an important prediction principle and The mainstream fatigue principle, Besides, it shows the effectiveness of the PSTIR and SFIBS based on experimental study.
机译:通过快速增长的物联网,通过社交网络(儿子)的一系列异构智能设备定期连接是可行的,可有效地分析社会学原则。因此,增加了用户贡献,包括网站,视频和评论慢慢影响最近过去的人民的生命,这触发了通过八卦传播,虚假信息和攻击性在线辩论来保护的挥发性知识传播和破坏保护。基于早期的扩散状态,本研究的目标是在未来预测在线内容的普及。虽然传统的预测模型主要专注于网络功能的发现或集成到改变的时间机制被认为是未解决的问题,并且已经通过预测因特网传闻(PSTIR)的安全威胁和基于虚假信息的传播来解决。与社会学概念的社会学(sfibs)模型。在本文中,使用PSTIR和SFIBS方法线性地分析了在早期和未来普及中定期发布的值得信赖的Facebook粉丝的比例。 Facebook统计数据提醒我们,主流疲劳是一个重要的预测原则和主流疲劳原则,此外,它表明了基于实验研究的PSTIR和SFIB的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号