首页> 外文期刊>Computer standards & interfaces >Intelligent software product line configurations: A literature review
【24h】

Intelligent software product line configurations: A literature review

机译:智能软件产品线配置:文献回顾

获取原文
获取原文并翻译 | 示例

摘要

A software product line (SPL) is a set of industrial software-intensive systems for configuring similar software products in which personalized feature sets are configured by different business teams. The integration of these feature sets can generate inconsistencies that are typically resolved through manual deliberation. This is a time-consuming process and leads to a potential loss of business resources. Artificial intelligence (AI) techniques can provide the best solution to address this issue autonomously through more efficient configurations, lesser inconsistencies and optimized resources. This paper presents the first literature review of both research and industrial AI applications to SPL configuration issues. Our results reveal only 19 relevant research works which employ traditional AI techniques on small feature sets with no real-life testing or application in industry. We categorize these works in a typology by identifying 8 perspectives of SPL. We also show that only 2 standard industrial SPL tools employ AI in a limited way to resolve inconsistencies. To inject more interest and application in this domain, we motivate and present future research directions. Particularly, using real-world SPL data, we demonstrate how predictive analytics (a state of the art AI technique) can separately model inconsistent and consistent patterns, and then predict inconsistencies in advance to help SPL designers during the configuration of a product.
机译:软件产品线(SPL)是一组工业软件密集型系统,用于配置相似的软件产品,其中个性化功能集由不同的业务团队配置。这些功能集的集成可能会产生不一致,通常可以通过手动协商来解决。这是一个耗时的过程,并导致业务资源的潜在损失。人工智能(AI)技术可以通过更有效的配置,更少的不一致性和优化的资源来提供最佳的解决方案,以自主解决此问题。本文介绍了针对SPL配置问题的研究和工业AI应用的第一篇文献综述。我们的结果仅揭示了19项相关研究工作,这些研究在小型特征集上采用了传统的AI技术,没有进行实际测试或在工业中的应用。通过确定SPL的8个观点,我们将这些作品归类为一种类型。我们还显示,只有两种标准的工业SPL工具以有限的方式使用AI来解决不一致问题。为了在这个领域注入更多的兴趣和应用,我们激励并提出了未来的研究方向。特别是,使用现实世界的SPL数据,我们演示了预测分析(一种先进的AI技术)如何能够分别对不一致和一致的模式进行建模,然后预先预测不一致,以在产品配置期间帮助SPL设计人员。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号